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Distance to instability & distance to stability

Stability of dynamical systems...

Stability of linear time invariant dynamical system at equilibrium point depends of
the location of the system eigenvalues:
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discrete case (d-stability)

xk+1 = Axk , k ∈ N
Λ(A) ⊆ B1
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continuous case (c-stability)

ẋ(t) = Ax(t), t ∈ R+
0

Λ(A) ⊆ C−

Λ(A) := {z ∈ C : det(A− zI ) = 0}
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Distance to instability & distance to stability

Distance to c- instability/stability

Λ(A) := {z ∈ C : det(A− zI ) = 0}

Λ A( )
Λ A+Δ( )

inf ‖∆‖
s.t. Λ(A + ∆) 6⊆ C−

Λ A( )
Λ A+Δ( )

inf ‖∆‖
s.t. Λ(A + ∆) ⊆ C−

Λε(A) :=
⋃

‖∆‖<ε

Λ(A + ∆)

L. N. Trefeten, M. Embree: Spectra and Pseudospectra: The Behavior of
Nonnormal Matrices and Operators, Princeton University Press, 2005
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Distance to instability & distance to stability

Several references on the distance to instability problems:
R. Byers: A Bisection Method for Measuring the Distance of a Stable Matrix to the
Unstable Matrices. SIAM J. Scientific and Statistical Computing, 9:875-881, 1988

C. He, G. A. Watson: An algorithm for computing the distance to instability. SIAM J.
Matrix Analysis Applications 20:101-116, 1999

N. Guglielmi, M. L. Overton: Fast Algorithms for the Approximation of the
Pseudospectral Abscissa and Pseudospectral Radius of a Matrix. SIAM J. Matrix
Analysis Applications 32:1166-1192, 2011

M. Gurbuzbalaban, N. Guglielmi, M. L. Overton: Fast Approximation of the H? Norm
via Optimization over Spectral Value Sets. SIAM J. Matrix Anal. Appl. 34 (2013), pp.
709-737

N. Guglielmi, D. Kressner, C. Lubich: Low-rank diferential equations for Hamiltonian
matrix nearness problems. Oberwolfach-Walke : MFO, 2013

M. A. Freitag, A. Spence: A Newton-based method for the calculation of the distance to
instability. Linear Algebra and Applications 435(12): 3189-3205, 2011
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Distance to instability & distance to stability

Distance to c-stability

For a given A such that Λ(A) 6⊆ C− solve

inf ‖∆‖
s.t. Λ(A + ∆) ⊆ C−

Pseudospectral methods
may not be the best choice!

min
X ,Y
‖X − A‖F

s.t. −(XY + YX ∗) � 0
Y � 0

Λε A( )

Λ A( )
Λ A+Δ( )

Lyapunov stability test!

F.-X. Orbandexivry, Y. Nesterov, P. M. Van Dooren: Nearest stable system using
successive convex approximations. Automatica 49: 1195-1203, 2011
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Motivations

WHAT ABOUT OTHER NOTIONS
OF "STABILITY" ?!
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Motivations

Damped stability

Not only that the system needs to be c-stable, but, additional constraints that
depend on the imaginary parts of eigenvalues (frequency of the oscillations of the
basic solutions) have to hold:

In the perturbed motion of a rocket, taking
into account the elastic oscillations of its
airframe as a straight flexible nonuniform
rod:

the "stable" eigenvalues belong to the
domain bounded by Cissoid of Diocles

Another damped stability domain that occurs
in practice is a wedge around real axis:

the "stable" eigenvalues have complex
arguments between π − θ and π + θ
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Motivations

Frequency band of the undesirable noise

In structural acoustics, the localization of the eigenvalues in the complex plane
corresponds to the appearance of acoustic waves of certain frequencies. In
practice, certain frequency bands of the noise are of special interest.

For example, the audible frequencies for an average human ear belong to the
band 20Hz−20kHz, while in airplanes, vibrations below 10Hz have a profound
influence on specific parts and systems of the human body.

The system is not producing noise of the frequency
between alHz and ahHz when the spectrum is either

– in the left half-plane (stable modes), or
– out of the horizontal strips in the right
half-plane [−2πah,−2πal ] and [2πal , 2πah]
(frequency region of unstable modes)
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Motivations

Stability of the robust reversible discrete process

In the treatment of discrete dynamical systems, constrains additional to d-stability
may exist, too.

In the Leslie model of the population dynamics,
two main concerns are connected with the
spectrum:

– existence of the stable equilibrium state
(eigenvalues are in the open unit disk)

– the robust reversibility, i.e., the determinant
is bounded away from zero
(eigenvalues are out of the small open disk)
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Motivations

The goal

Having this in mind, our goal is to

1. define the matrix nearness problems that cover more general notions
of the "stability",

2. develop appropriate tools for their solution,
3. construct efficient computational techniques for practical use.

Therefore, we are interested in:
domains of the "stability" in its general setting,
behaviour of the eigenvalues under perturbations,
computational techniques for eigenvalue optimisation problems.
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Lyapunov-type localization domains

LYAPUNOV-TYPE EIGENVALUE
LOCALIZATIONS
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Lyapunov-type localization domains

Lyapunov-type localization domains

Given a Hermitian matrix Γf = Γ∗
f = [γpq] ∈ Cm,m, m ≥ 2, and a set of the linearly

independent holomorphic complex functions {ϕp}mp=1, we consider functions of the form

f (z) :=
m∑

p=1

m∑
q=1

γpqϕp(z)ϕq(z) = ϕ(z)TΓ ϕ(z),

where ϕ(z) = [ϕ1(z), ϕ2(z), . . . , ϕm(z)]T .

Since Γf = Γ∗
f , f is a real valued function of a complex variable and we can consider it

as a map f : R2 → R, and define the domains in the complex plane:

Λ+
f := {z ∈ C : f (z) > 0}

Λ−
f := {z ∈ C : f (z) < 0}

Λ0
f := {z ∈ C : f (z) = 0}

For notational convenience, in the remainder we identify f (z) = f (x + ıy) with f (x , y),
i.e., f (z) = f (x , y).
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Lyapunov-type localization domains

Lyapunov-type localization domains
Hermitian functions in standard basis:

f (z) :=
m∑

p=1

m∑
q=1

γpq(z)p−1(z)q−1 = ϕ(z)TΓf ϕ(z),

where Γf = Γ∗
f and ϕ(z) = [1 z z2 . . . zm−1]T

The domains in the complex plane:
Λ+
f := {z ∈ C : f (z) > 0}

Λ−
f := {z ∈ C : f (z) < 0}

Λ0
f := {z ∈ C : f (z) = 0}
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Straight line y cos θ = (x − a) sin θ:

36 Location of Matrix Spectrum

Examples.

Here are the examples of algebraic and transcendental domains in
the complex plane of the form

Λ+
f =

{
λ : f(λ, λ̄) = zλ Γ z∗

λ > 0
}

,

the geometric properties of those domains can be used in the prob-
lems of analysis and control of the quality of systems. All functions f
describing those domains belong to the class H1 and, consequently,
satisfy the generalized Lyapunov theorem. In addition, in Exam-
ples 1, 2, 13, 14, 16, 20–22 the functions f ∈ H2 satisfy the condi-
tions of the inertia theorem (see Section 1.5). Unfortunately, general
geometric regularities of the domains Λ+

f corresponding to the class
of functions f ∈ Hm

0 have not been found yet.

The list of functions below can be considerably extended. When
making it out, the author used equations of major algebraic curves
of order p ≤ 6, and also of some transcendent curves of the form
ϕ(x, y) = 0, x = Reλ, y = Imλ. In the pictures the hatched part of
the plane C1 corresponds to each domain Λ+

f .

1. Straight line y cos θ = (x − a)sinθ, 0 ≤ θ ≤ π/2.

Γ =

[
2a sin θ − sin θ + i cos θ

− sin θ − i cos θ 0

]
,

zλ = [1,λ].

2. Circle (x − a)2 + (y − b)2 = r2, w = a + ib.

Γ =

[
r2 − |w|2 w

w̄ −1

]
,

zλ = [1,λ].

Γf =

[
2a sin θ − sin θ + ı cos θ

− sin θ − ı cos θ 0

]
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Hermitian functions in standard basis:

f (z) :=
m∑

p=1

m∑
q=1

γpq(z)p−1(z)q−1 = ϕ(z)TΓf ϕ(z),

where Γf = Γ∗
f and ϕ(z) = [1 z z2 . . . zm−1]T

The domains in the complex plane:

Λ+
f := {z ∈ C : f (z) > 0}

Λ−
f := {z ∈ C : f (z) < 0}

Λ0
f := {z ∈ C : f (z) = 0}

Circle (x − a)2 + (y − b)2 = r2, w = a + ıb:

36 Location of Matrix Spectrum

Examples.

Here are the examples of algebraic and transcendental domains in
the complex plane of the form

Λ+
f =

{
λ : f(λ, λ̄) = zλ Γ z∗

λ > 0
}

,

the geometric properties of those domains can be used in the prob-
lems of analysis and control of the quality of systems. All functions f
describing those domains belong to the class H1 and, consequently,
satisfy the generalized Lyapunov theorem. In addition, in Exam-
ples 1, 2, 13, 14, 16, 20–22 the functions f ∈ H2 satisfy the condi-
tions of the inertia theorem (see Section 1.5). Unfortunately, general
geometric regularities of the domains Λ+

f corresponding to the class
of functions f ∈ Hm

0 have not been found yet.

The list of functions below can be considerably extended. When
making it out, the author used equations of major algebraic curves
of order p ≤ 6, and also of some transcendent curves of the form
ϕ(x, y) = 0, x = Reλ, y = Imλ. In the pictures the hatched part of
the plane C1 corresponds to each domain Λ+

f .

1. Straight line y cos θ = (x − a)sinθ, 0 ≤ θ ≤ π/2.

Γ =

[
2a sin θ − sin θ + i cos θ

− sin θ − i cos θ 0

]
,

zλ = [1,λ].

2. Circle (x − a)2 + (y − b)2 = r2, w = a + ib.

Γ =

[
r2 − |w|2 w

w̄ −1

]
,

zλ = [1,λ].

Γf =

[
r2 − |w |2 w

w −1

]
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Lyapunov-type localization domains
Hermitian functions in standard basis:

f (z) :=
m∑

p=1

m∑
q=1

γpq(z)p−1(z)q−1 = ϕ(z)TΓf ϕ(z),

where Γf = Γ∗
f and ϕ(z) = [1 z z2 . . . zm−1]T

The domains in the complex plane:
Λ+
f := {z ∈ C : f (z) > 0}

Λ−
f := {z ∈ C : f (z) < 0}

Λ0
f := {z ∈ C : f (z) = 0}

Elipse x2/a2 + y2/b2 = 1, a > 0, b > 0:

Hermitian Functions of the Class Hm
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3. Ellipse x2/a2 + y2/b2 = 1, a > 0, b > 0.

Γ =

⎡
⎣

4a2b2 0 a2−b2

0 −2(a2+b2) 0
a2−b2 0 0

⎤
⎦,

zλ = [1,λ,λ2].

4. Parabola x = a − by2, a < 0, b > 0.

Γ =

⎡
⎣

2a −1 b/2
−1 −b 0
b/2 0 0

⎤
⎦,

zλ = [1,λ,λ2].

5. Hyperbola x2/a2 − y2/b2 = 1, 0 < b ≤ a.

Γ =

⎡
⎣

−4a2b2 0 a2+b2

0 2(b2−a2) 0
a2+b2 0 0

⎤
⎦,

zλ = [1,λ,λ2].

6. Vertical straight lines (x − a)(b − x) = 0, a < b.

Γ =

⎡
⎣

−2ab a + b −1/2
a + b −1 0
−1/2 0 0

⎤
⎦,

zλ = [1,λ,λ2].

Γf =

 4a2b2 0 a2 − b2

0 −2(a2 + b2) 0
a2 − b2 0 0
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Lyapunov-type localization domains
Hermitian functions in standard basis:

f (z) :=
m∑

p=1

m∑
q=1

γpq(z)p−1(z)q−1 = ϕ(z)TΓf ϕ(z),

where Γf = Γ∗
f and ϕ(z) = [1 z z2 . . . zm−1]T

The domains in the complex plane:
Λ+
f := {z ∈ C : f (z) > 0}

Λ−
f := {z ∈ C : f (z) < 0}

Λ0
f := {z ∈ C : f (z) = 0}

Horizontal strip y2 = a2, a > 0:

38 Location of Matrix Spectrum

7. Horizontal straight lines y2 = a2, a > 0.

Γ =

⎡
⎣

4a2 0 1
0 −2 0
1 0 0

⎤
⎦,

zλ = [1,λ,λ2].

8. Straight line and circle x(x2 + y2 + 2rx) = 0, r ≥ 0.

Γ =

⎡
⎣

0 0 −r
0 −2r −1

−r −1 0

⎤
⎦,

zλ = [1,λ,λ2].

9. Curve 2ax − (x2 + y2)2 = 0, a < 0.

Γ =

⎡
⎣

0 a 0
a 0 0
0 0 −1

⎤
⎦,

zλ = [1,λ,λ2].

10. Curve (x + a)[y2(x + a) + b ] = 0, a > 0, b > 0.

Γ =

⎡
⎢⎢⎢⎢⎣

−4ab −2b a2 a 1/4
−2b −2a2 −a 0 0
a2 −a −1/2 0 0
a 0 0 0 0

1/4 0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

zλ = [1,λ,λ2,λ3,λ4].

Γf =

 4a2 0 1
0 −2 0
1 0 0
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Lyapunov-type localization domains

Lyapunov-type localization domains
Hermitian functions in standard basis:

f (z) :=
m∑

p=1

m∑
q=1

γpq(z)p−1(z)q−1 = ϕ(z)TΓf ϕ(z),

where Γf = Γ∗
f and ϕ(z) = [1 z z2 . . . zm−1]T

The domains in the complex plane:
Λ+
f := {z ∈ C : f (z) > 0}

Λ−
f := {z ∈ C : f (z) < 0}

Λ0
f := {z ∈ C : f (z) = 0}

Two circles (x2 + y2 − r2)(R2 − x2 − y2) = 0, 0 < r < R:

Hermitian Functions of the Class Hm
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11. Circles (x2 + y2 − r2)(R2 − x2 − y2) = 0, 0 < r < R.

Γ =

⎡
⎣

−r2R2 0 0
0 r2 + R2 0
0 0 −1

⎤
⎦,

zλ = [1,λ,λ2].

12. Astroid (x2 + y2 − a2)3 + 27a2x2y2 = 0, a > 0.

Γ =

⎡
⎢⎢⎢⎢⎣

16a6 0 0 0 27a2

0 −48a4 0 0 0
0 0 −6a2 0 0
0 0 0 −16 0

27a2 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

zλ = [1,λ,λ2,λ3,λ4].

13. Cassini ovals (x2 + y2)2 − 2b2(x2 − y2) = a4 − b4, 0 < a < b.

Γ =

[
a4 − b4 b2

b2 −1

]
,

zλ = [1,λ2].

14. Bernoulli lemniscate (x2 + y2)2 = 2a2(x2 − y2), a > 0.

Γ =

[
0 a2

a2 −1

]
,

zλ = [1,λ2].

Γf =

 −r2R2 0 0
0 r2 + R2 0
0 0 −1
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Lyapunov-type localization domains

The Generalized Lyapunov Theorem

Theorem (Mazko 2008)

Given a Hermitian function f defined by the Hermitian matrix Γf , such that the
matrix Γf ϕ(z)ϕ(z)TΓf − f (z)Γf is Hermitian positive semidefinite, define the
operator

Lf
A(X ) :=

m∑

p=1

m∑

q=1

γpqA
p−1XA∗(q−1).

Then, for an arbitrary matrix A ∈ Cn,n and an arbitrary Hermitian positive definite
matrix Y ∈ Cn,n, all the eigenvalues of matrix A belong to the domain Λ+

f if and
only if the equation Lf

A(X ) = Y has a unique positive definite solution X , i.e.,

Λ(A) ⊆ Λ+
f if and only if Lf

A : Hn,n → Hn,n is a bijection.

A.G. Mazko: Matrix Equations, Spectral Problems and Stability of Dynamic Systems.
Cambridge Scientific Publishers Ltd, 2008
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Distance to delocalization / localization

Distance to delocalization/localization

Given arbitrary Γf = Γ∗f , let Λ+
f , Λ0

f and Λ−f be the domains where
f (z) = ϕ(z)∗Γf ϕ(z) is positive, zero and negative, respectively

Distance to delocalization:
For a given A such that Λ(A) ⊆ Λ+

f solve

δ−f (A) := sup ε

s.t. Λε(A) ⊆ Λ+
f

(K.,M. & S., SIMAX 2015)

Λ A( )
Λ A+Δ( )

Distance to localization:
For a given A such that Λ(A) 6⊆ Λ+

f solve

δ+
f (A) := inf

X ,Y
‖X − A‖

s.t. Lf
X (Y ) � 0

Y � 0
(MFO RIP project, in preparation)

Λ A( )
Λ A+Δ( )
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Distance to delocalization / localization Computational methods of the distance to delocalization

Problem formulation and the assumptions

For a given A such that Λ(A) ⊆ Λ+
f solve

δ−f (A) = sup ε
s.t. Λε(A) ⊆ Λ+

f

ε̂ = min
z∈Λ0

f

σmin(A− zI )

Λ A( )
Λ A+Δ( )

Λε A( )

Assumptions:
1. For the domains defined by f (z), Λ(A) ⊆ Λ+

f and ∂Λ+
f = ∂Λ−f = Λ0

f .

2. The distance to delocalization δ−f (A) is achieved at a simple singular value of
A− ẑ I , where ẑ is point where the solution of the above problem is achieved.
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A− ẑ I , where ẑ is point where the solution of the above problem is achieved.

Vladimir R. Kostić (Uni. of Novi Sad) 27.10.2015 18 / 40



Distance to delocalization / localization Computational methods of the distance to delocalization

Overview of the computational issues:

Under the assumptions, we have developed

1. local explicit distance to delocalization algorithm (eD2D) mainly
intended for medium size problems,

2. local implicit distance to delocalization algorithm (iD2D) mainly
intended for large (sparse) problems,

3. control of the iteration step size (damping) to enhance the stability of
the iteration sequences - eD2Dd and iD2Dd „

4. globality test (piece-wise linear and/or circular domain boundary) as
an outer iteration to produce global methods - eD2D(g) and iD2D(g),

5. strategies for choosing appropriate starting points for D2D algorithms.
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Distance to delocalization / localization Explicit D2D algorithm

Explicit distance to delocalization algorithm

If we define s(x , y) := σmin(A− (x + ıy)I ), our aim is to determine (x̂ , ŷ) ∈ R2

such that
s(x̂ , ŷ) = min{s(x , y) : f (x , y) = 0, x , y ∈ R}.

In the neighborhood of (x̂ , ŷ) the following equalities hold

sx(x , y) = −Re(u∗v),
sy (x , y) = Im(u∗v),
sxx(x , y) = εu∗Eu + εv∗Fv + 2Re(v∗(A− zI )Eu) + ε−1(Im(u∗v))2,
sxy (x , y) = 2Im(v∗(A− zI )Eu) + ε−1Re(u∗v)Im(u∗v),
syy (x , y) = εu∗Eu + εv∗Fv − 2Re(v∗(A− zI )Eu) + ε−1(Re(u∗v))2.

Here,

E = (ε2I − (A− zI )∗(A− zI ))† and F = (ε2I − (A− zI )(A− zI )∗)†,

where † denotes the Moore-Penrose pseudoinverse, and (ε, u, v) is the minimal
singular triplet of A− zI with z = x + ıy .
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Explicit distance to delocalization algorithm

If we define s(x , y) := σmin(A− (x + ıy)I ), our aim is to determine (x̂ , ŷ) ∈ R2

such that
s(x̂ , ŷ) = min{s(x , y) : f (x , y) = 0, x , y ∈ R}.

While, the derivatives of the Hermitian function f (x , y) in the standard basis can
be expressed as:

fx(x , y) = ϕT (x , y) [D∗Γf + ΓfD]ϕ(x ,−y),
fy (x , y) = ı ϕT (x , y) [D∗Γf − ΓfD]ϕ(x ,−y),
fxx(x , y) = ϕT (x , y)

[
D2∗Γf + 2D∗ΓfD + ΓfD

2
]
ϕ(x ,−y),

fxy (x , y) = ı ϕT (x , y)
[
D2∗Γf − ΓfD

2
]
ϕ(x ,−y),

fyy (x , y) = −ϕT (x , y)
[
D2∗Γf − 2D∗ΓfD + ΓfD

2
]
ϕ(x ,−y),

where

D =




0
1 0

2 0

. . .
. . .
m−1 0


 ϕ(x , y) =




1
x + ıy

(x + ıy)2

.

.

.
(x + ıy)m−1




Just m ×m matrix-vector multiplications!
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Explicit distance to delocalization algorithm

Thus, we can introduce the Lagrange function

Φ(x , y , µ) := s(x , y) + µf (x , y),

where µ is a Lagrange multiplier, and solve minimisation problem applying
Newton’s method given by

ξ(k+1) = ξ(k) −
[
∇2Φ

(
ξ(k)
)]−1

∇Φ
(
ξ(k)
)
, k = 0, 1, 2, . . . ,

where ξ = [x , y , µ]T and

∇Φ =




sx + µfx
sy + µfy

f


 , ∇2Φ =




sxx + µfxx sxy + µfxy fx
sxy + µfxy syy + µfyy fy

fx fy 0


 .

For the sake of brevity, here we omit the arguments (x , y , µ).
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THE IMPLICIT DISTANCE TO
DELOCALIZATION ALGORITHM
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Distance to delocalization / localization Implicit D2D algorithm

Implicit determinant approach...

We use the ideas from the papers

A. Spence and C. Poulton.: Photonic band structure calculations using nonlinear
eigenvalue techniques. J. Comput. Phys., 204(1):65–81, 2005.

M. A. Freitag and A. Spence.: A Newton-based method for the calculation of the
distance to instability.. Linear Algebra Appl., 435(12):3189–3205, 2011.

on the implicit determinant method to replace intensive SVD computations by LU
factorizations, which significantly reduces the overall computational cost.

To that end, we start with the following formulation of the D2D problem:

min ε > 0 s.t.
(A− (x + ıy)I )v = εu,
(A∗ − (x − ıy)I )u = εv ,
f (x , y) = 0,

u, v ∈ Cn, x , y , ε ∈ R.
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Implicit distance to delocalization algorithm

For a given z = x + ıy ∈ C and ε > 0 define:

H(x , y , ε) =

[
−εI A− (x + ıy)I

A∗ − (x − ıy)I −εI

]
and

M(x , y , ε) =

[
H(x , y , ε) c

c∗ 0

]

and observe linear system
[

H(x , y , ε) c
c∗ 0

] [
g(x , y , ε)
h(x , y , ε)

]
=

[
0
1

]

Having that M(x , y , ε) is nonsingular, h(x , y , ε) = detH(x,y ,ε)
detM(x,y ,ε) can be

computed by LU factorization

h(x , y , ε) = 0 if and only if ε is a singular value of A

∂Λε(A) is the outermost closed curve of {(x , y) ∈ R2 : h(x , y , ε) = 0}
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Implicit distance to delocalization algorithm

For given hermitian matrix Γf and matrix A, such that Λ(A) ⊆ Λ+
f , solve:

min ε2

s.t. h(x , y , ε) = 0
f (x , y) = 0
x , y , ε ∈ R

h x, y,ε( ) = 0

f x, y( ) = 0

min Ψ(x , y , ε, λ, µ),

Ψ(x , y , ε, λ, µ) := ε2 + λh(x , y , ε) + µf (x , y)

Newton’s method for solving ∇Ψ = 0...
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Implicit distance to delocalization algorithm

Derivatives of h(x , y , ε) :



−εI A− (x + ıy)I c1
A∗ − (x − ıy)I −εI c2

c∗1 c∗2 0




︸ ︷︷ ︸
M(x ,y ,ε)




u(x , y , ε)
v(x , y , ε)
h(x , y , ε)


 =




0
0
1





 M






ux uy uε uxx uxy uyy uxε uyε uεε
vx vy vε vxx vxy vyy vxε vyε vεε
hx hy hε hxx hxy hyy hxε hyε hεε




=




v ıv u 2vx vy + ıvx 2ıvy ux + vε uy + ıvε 2uε
u −ıu v 2ux uy − ıux −2ıuy vx + uε vy − ıuε 2vε
0 0 0 0 0 0 0 0 0




One LU factorization of (2n + 1)× (2n + 1) matrix M(x , y , ε)!
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NUMERICAL EXAMPLES
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Numerical examples

Orr-Sommerfeld matrix & distance to c-instability

Let A be a matrix of size n = 2000 that originates from the Orr-Sommerfeld equation of
parallel fluid flow in an idealized infinitely long domain with Reynolds number R = 1000
(EigTool function orrsommerfeld_demo.m)

i y (i) = −0.3 . . . ε(i) = 0.002 . . . Error(i)
FS iD2D FS iD2D FS iD2D

1 46284817581 46284817581 904423522 904423522 — —
2 51841997634 51741589158 904423522 904423522 5.5574e-03 5.4573e-03
3 52041616428 52040927685 851016862 851945690 2.0119e-04 3.0033e-04
4 52043134040 52043133995 876134970 876101856 1.5177e-06 2.2069e-06
5 52043134062 52043134065 876154103 876154101 2.1732e-11 6.9504e-11
6 52043134066 52043134064 876154104 876154104 4.1219e-12 6.0692e-13
7 52043134068 — 876154104 — 1.8439e-12 —
8 52043134068 — 876154104 — 2.6605e-13 —

Comparing the number of inner iterations and the CPU time:

eD2D: 28 inner iterations in 21.55min

iD2D: 6 inner iterations in 1.86min

FS: 8 inner iterations in 3.52min

Vladimir R. Kostić (Uni. of Novi Sad) 27.10.2015 29 / 40



Numerical examples

Tolosa matrix & distance to c-instability
Let A be a Tolosa matrix of size n = 340 from the Matrix Market repository (highly
nonnormal, medium size and sparse, used in the stability analysis of a flying airplane).

i y (i) = 155.999 . . .
FS eD2D iD2D

1 9219999 9219999 9219999
2 8439555 8439945 8440335
3 8439945 8439945 8439945
4 8439945 8439945 8439945

i ε(i) = 0.00 . . . Error(i)

FS eD2D iD2D FS eD2D iD2D
1 2001797137 2001797137 2001797137 — — —
2 2001797137 1999796887 2001797137 7.8070e-05 8.0226e-10 7.8018e-05
3 1999796637 1999796887 1999796638 3.8968e-08 1.3095e-14 3.9027e-08
4 1999796887 — 1999796887 2.5160e-14 — 8.2767e-15

Comparing the number of inner iterations and the CPU time:

eD2D: 3 inner iterations in 0.97sec

iD2D: 4 inner iterations in 0.58sec

FS: 4 inner iterations in 0.66sec
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Numerical examples

Leslie matrix & D2D for the annulus domain

Let A = [aij ] be a Leslie matrix describing the population of 10 age groups that has a
geometric progression of birthrates and harmonic transition probabilities. To be more
realistic, the fertility of the first age group is set to zero. More precisely,

aij =

 aqj , for i = 1, j ≥ 2
b/i , for j = i + 1
0, otherwise,

where a = 50% is the fertility of the second generation, q = 85% is the factor of
geometric decay of fertility and b = 75% is the transition from the first age group to the
second.
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Numerical examples

Leslie matrix & D2D for the annulus domain
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(a) eD2D, z0 = 1.1
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(b) eD2D, z0 = 0.01
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Leslie matrix & D2D for the annulus domain
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Leslie matrix & D2D for annulus domain
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(e) eD2D, sp = 10
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Twisted matrix & D2D for the hyperbolic domain

A particularly challenging example for the distance to delocalization is the "Twisted"
matrix A of dimension n = 100 from the EigTool package (an exponentially strong
degree of nonnormality and its pseudospectrum grows the fastest around zero).
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Boeing767 matrix & D2D for the frequency domain (< 5Hz)
Let A be the unstable matrix of size n = 55 that comes from flutter analysis of the
Boeing 767 aircraft (EigTool function boeing_demo(’O’)) with unstable pair of
eigenvalues slightly inside the right half-plane that correspond to vibrations with a
frequency of approximately 3.15Hz .

Let us compute the robustness of the unstable oscillations below 5Hz, i.e., the distance
to delocalization from the domain Λ+

f with a nonstandard basis ϕ defined by
f (x , y) = −x − y2 + a2 +

√
x2 + (y2 + a2)2, where a = 2π · 5 = 31.4159.
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CONCLUSIONS & FURTHER RESEARCH
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Conclusions:

We introduced matrix nearness problems of delocalization/localization,

We proposed use of Lyapunov-type domains as a suitable framework for such
problems,

We designed a pseudospectral algorithms for distance to delocalization:
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Numerical examples

Further research:

Development of methods that assure global optimization (tunneling
algorithms with repellers, filtering algorithms, etc. ),

Application to the domains of numerical stability.

Investigating transient behavior for matrix functions (Kreiss constants).

Computing:

real distance to delocalization/localization
structured complex distance to delocalization/localization
structured real distance to delocalization/localization

Development of computational methods for distance to localization using
generalized Lyapunov theorem and successive convex approximations,

Generalization of the delocalization/localization matrix nearness problems to
polynomial eigenvalue problems.
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Thank you very much for your attention.
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