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An example of learning to write digits

❖ Learner is given visual examples of  
digits 0, 1, 2, 3, 4, 0, 1, 2, …

❖ The task is, when presented another  
(unseen) example, to produce the  
images that continue the sequence 

❖ Dataset: MNIST

❖ Learning task is unsupervised  
(we don’t see the labels)

❖ Problem can be formulated as a 
stochastic process (dynamical system) 

❖ Ambient dimension is large (~784) but 
the effective dimension is small  
(cyclic order of 5 classes)

❖ Challenges:  
1) we don’t know the data distributions 
2) we don’t know the transition rule 
         (its’ a non deterministic one!)



An example of learning to write digits
❖ Let’s solve it with linear vector valued regression (aka Galerkin projection)

✓ Optimal solution, i.e. 

✓ Linear regression ~ linear dynamics?!

✓ RBF Kernel regression ~ linear dynamics in the RKHS?! 

✓ CNN classifier features regression ~ linear in a representation space?!

𝔼[Xt+1 | Xt]



Regression vs Operator Regression 
❖ Regression: given   learn  s.t. 

✦ Optimal solution w.r.t. MSE is the regression function 
✦ So, we just learn the conditional mean. Can we learn distribution?

❖ Operator perspective: let  s.t. 

✦ Applying  to characteristic functions of sets, we obtain probabilities
✦ Solving the linear operator regression problem we can predict conditional 

probability distributions!

(X, Y) ∼ μX,Y f : 𝒳 → 𝒴 Y = f(X)
𝔼[Y | X = ⋅ ]

EY|X: ℒ2
μY

(𝒴)→ℒ2
μX

(𝒳) EY|X f =𝔼[ f(Y) |X= ⋅ ]

EY|X



Reminder on Transfer Operators 
Consider time-homogenous Markov process   i.e. 

 independent of  , which is described 
(Xt)t∈𝕋 ⊆ 𝒳, Xt ∼ μt ,

ℙ[Xs+t |X≤s] = ℙ[Xs+t |Xs] s, s+t ∈ 𝕋

✦ in discrete time (  & ) by transfer operators  

✦ in continous time ( ) by TO semigroup 

✦ and when is stationary , by linear dynamical system in a 
function space, i.e. for  and 

𝕋=ℕ s=1 EXs+1 | Xs
=𝔼[[ ⋅ ](Xs+1) | Xs]

𝕋=ℝ+ (EXs+t | Xs
)t≥0

(∀t∈𝕋)(μt =π)
At =EXs+t|Xs

: ℒ2
π(𝒳)→ℒ2

π(𝒳) qt =dμt /dπ∈L2
π(𝒳)

⟨qs+t , f⟩L2
π(𝒳) =𝔼[ f(Xs+t)] = 𝔼[𝔼[ f(Xs+t) |Xs]]=⟨qs, At f⟩L2

π(𝒳) =⟨A*t qs , f⟩L2
π(𝒳)

   and   ,   where   qt =(A*1 )tq0, t∈ℕ qt =etL*q0, t∈ℝ+ L=limt→0+(At − I)/t

since 

Stochastic Koopman



General learning pipeline

❖ Representation a priori chosen or 
learned

❖ Regression can be w.r.t. various 
losses and regularisation types

❖ Both can be w/o prior knowledge 

❖ We might care of various tasks 



Reminder on SLT of operator regression 

ℛ(G) = 𝔼Xs∼π ∥ϕ(Xs+t) − G*ϕ(Xs)∥2

Ghi = λihi ⇒ ∥(λi I − At)−1∥−1 ≤ ∥Athi − λihi∥L2
π(𝒳) ≤ ∥At|ℋ

− G∥ℋ→L2
π(𝒳)

ℰ(G)

∥hi∥ℋ

∥hi∥L2π(𝒳)

operator norm error 
(excess risk)

metric 
distorsion

∥𝔼[h(Xs+t) | Xs = ⋅ ] − Gh∥ ≤ ℰ(G)∥h∥ℋ
t-step ahead prediction 

ℋ ℋ

ℒ2
π(𝒳) ℒ2

π(𝒳)

G

At

Since we don’t know  we restrict  to a chosen hypothesis space  and  
look for an operator  such that  leading to

L2
π(𝒳) At ℋ

G : ℋ→ℋ At⟨w, ϕ( ⋅ )⟩≈⟨Gw, ϕ( ⋅ )⟩,

Risk minimisation:



Reminder on SLT of operator regression 

ℋ ℋ

ℒ2
π(𝒳) ℒ2

π(𝒳)

G

Pℋ
At|ℋ

 Estimation error decomposition
 is empirical 

version of 
Ĝ

G

Metric distortion via covariance operator:

 Projection operator:  Pℋ f = argmin
h∈ℋ

∥f − h∥ℒ2
π
, f∈ℒ2

π

η(h) =
∥h∥ℋ

∥C1/2h∥ℋ
C = 𝔼X∼π ϕ(X) ⊗ ϕ(X)

≤ ∥(I−Pℋ)At|ℋ
∥ℋ→ℒ2

π
+ ∥PℋAt|ℋ

−G∥ℋ→ℒ2
π

+ ∥G−Ĝ∥ℋ→ℒ2
π

representation error estimator’s bias estimator’s variance

ℰ(Ĝ)

Since we don’t know  we restrict  to a chosen hypothesis space  and  
look for an operator  such that  leading to

L2
π(𝒳) At ℋ

G : ℋ→ℋ At⟨w, ϕ( ⋅ )⟩≈⟨Gw, ϕ( ⋅ )⟩,



What is the optimal representation? 
Typically we have two situations,  is either finite or infinite-dimensional RKHSℋ

❖ RKHS is a span of dictionary of functions, i.e. 
✦ Representation error is controlled by letting 
✦ Without the prior knowledge, the representation error is a bottleneck

ℋ=span(zj)j∈[d] ⊂ℒ2
π(𝒳)

d → ∞

❖ RKHS  is given by some universal reproducing kernel 
✦ No representation error, i.e. 

✦ Learning guarantees depend on the effective dimension of  in , 
and the regularity of  w.r.t.  (the devil is in the tail eiegenvectors of covariance)

ℋ k : 𝒳×𝒳→ ℝ
∥(I−Pℋ)At|ℋ

∥ℋ→ℒ2
π
=0

ℋ ℒ2
π(𝒳)

At ℋ



What is the optimal representation? 
Typically we have two situations,  is either finite or infinite-dimensional RKHSℋ

❖ RKHS is a span of dictionary of functions, i.e. 
✦ Representation error is controlled by letting 
✦ Without the prior knowledge, the representation error is a bottleneck

ℋ=span(zj)j∈[d] ⊂ℒ2
π(𝒳)

d → ∞

❖ Representation desiderata:
✦ control the representation error, i.e. 

✦ approximate well the operator 
✦ align the geometries of  and , i.e. 

∥(I−Pℋ)At|ℋ
∥ℋ→ℒ2

π

PℋAt ≈ At

ℋ ℒ2
π(𝒳) C ≈ I

SVD



❖ When  is compact, the good choice for  is its leading left singular subspace

✦ the representation error is in general controlled   
and if  it is not even present 

✦ we approximate well, since  is the best rank-  approximation of 

✦ the geometry of  and  are the same since the orthonormality of the 
singular functions implies 

At ℋ

∥(I−Pℋ)At|ℋ
∥ℋ→ℒ2

π
≤ σd

A*t At = AtA*t
PℋAt d At

ℋ ℒ2
π(𝒳)
C = I

❖ The general problem is to learn the SVD of  having only the 
samples of 

EY|X : ℒ2
μY

→ℒ2
μX

(X, Y) ∼ μX,Y

What is the optimal representation? 

We can estimate  !⟨ f, EY|Xg⟩2
μX

= 𝔼[ f(X)g(Y)]



Linear Algebra meets Neural Networks 
❖ We can learn  with neural networks   

via different variational principles 

✦ Deep projections (ICLR2024):   

   

✦ Eckhart-Mirsky-Young (NeurIPS2024): 

 

EY|X =∑i∈ℕ0
σi ui ⊗ vi (σθ

i , uθ
i , vθ

i )i∈[d]

max
(ui,vi)i∈[d]

∥Pℋu
EY|XPℋv

∥2
HS(ℒ2

μY,ℒ2
μX)

min
(σi,ui,vi)i∈[d]

∥EY|X−∑i∈[d] σi ui ⊗ vi∥2
HS(ℒ2

μY,ℒ2
μX)−∥EY|X∥2

HS(ℒ2
μY,ℒ2

μX)

subject to   and CX =𝔼X[u(X)u(X)⊤]= I CY =𝔼Y[v(X)v(X)⊤]= I

∥C†/2
X CXYC†/2

Y ∥2
F ≥ ∥CXY∥2

F/(∥CX∥ ∥CY∥)

tr(ΣCXΣCY−2ΣCXY)

CY =𝔼(X,Y)[u(X)v(Y)⊤]



Linear Algebra meets Neural Networks 

DNN

LEARING THE REPRESENTATION OF CONDITINAL PROBABILITY

u𝜃 v𝜃cross-correlate

uncorrelate

𝑥, 𝑥′ 𝑖𝑖𝑑 batches y, 𝑦′𝑖𝑖𝑑 batches

DNN

𝜎𝜃

𝑋, 𝑌 , 𝑋′, 𝑌′  ∽  𝜌𝑖𝑖𝑑

ℒγ(θ) := 𝔼(X,Y),(X′￼,Y′￼)∼ρ iid L(uθ(X), uθ(X′￼), vθ(Y), vθ(Y′￼), σθ) + γ R(uθ(X), uθ(X′￼), vθ(Y), vθ(Y′￼))

Loss functional (cross-correlate): 

Orthogonality constraints (uncorrelate):
R(u, u′￼, v, v′￼)=(u⊤u′￼)2 − (u − u′￼)⊤(u − u′￼)

L(u, u′￼, v, v′￼, s)= 1
2 (u⊤diag(s)v′￼)2+ 1

2 (u′￼⊤diag(s)v)2

−(u−u′￼)⊤diag(s)(v−v′￼)

+(v⊤v′￼)2 − (v − v′￼)⊤(v − v′￼) + 2d

Regression in the representation space via SVD:

vθ ← ̂V⊤(Σθ)1/2vθuθ ← Û⊤(Σθ)1/2uθσθ ← ̂σ

(𝔼̂[uθΣθ(uθ)⊤])−1/2(𝔼̂[uθΣθ(vθ)⊤])(𝔼̂[vθΣθ(vθ)⊤])−1/2 = ÛΣ̂ ̂V⊤
 Learned truncated SVD 
  ̂E Y|X = ∑d

j=1 ̂σ θ
j ̂u θ

j ⊗ ̂v θ
j



Back to the example of digits…



Other examples…

Published as a conference paper at ICLR 2024

Table 4: Ordered MNIST Training times. Each model is run on CPU and we report mean ± std for
20 runs.

Model Fit Time (s) Time per Epoch (s)
DynamicalAE 0.571± 0.034 0.057± 0.003

Oracle-Features 0.098 -
DMD 0.333 -

KernelDMD-Poly3 4.914 -
KernelDMD-AbsExp 0.832 -

KernelDMD-RBF 0.776 -
DPNets 0.046± 0.004 0.049± 0.001

DPNets-relaxed 0.043± 0.004 0.051± 0.004

Chignolin folding transition

Figure 9: Three snapshots of Chignolin while undergoing a folding transition.

F.5 THE METASTABLE STATES OF CHIGNOLIN

In this experiment we build from the work in (Ghorbani et al., 2022) by employing our framework
to learn the leading eigenfunctions associated to the dynamics of Chignolin, a folding protein, from
a 106µs long molecular dynamics simulation sampled every 200 ps, totalling over half a million
data points (Lindorff-Larsen et al., 2011). We consider every heavy atom for a total of 93 nodes as
well as a cutoff radius of 6 Angstroms giving an average of 30 neighbours for each atom. Compared
to (Ghorbani et al., 2022), which selects only the ⇡ 20 C↵ atoms each with its first 5 neighbours,
our experiment has therefore a much larger scale. Indeed, (Ghorbani et al., 2022) reports being able
to train directly with the objective P

0, while in our case we always encountered numerical errors,
and we were able to only succesfully train the S

� objective. We parametrized the feature map with a
graph neural network (GNN) model. GNNs currently are the state of the art in modeling atomistic
systems (Chanussot et al., 2021), and allow one to elegantly incorporate the roto-translational and
permutational symmetries prescribed by physics. Specifically, we train a SchNet (Schütt et al.,
2019; 2023) model with 3 interaction blocks, where in each block the latent atomic environment
is 64-dimensional and the inter-atomic distances used for the message-passing step are expanded
over 20 radial basis functions. After the last interaction block, each latent atomic environment is
forwarded to a linear layer and then aggregated via averaging. The model has been trained for 100
epochs with an Adam optimizer and a learning rate of 10�3. We analyzed the eigenfunctions using
the technique described in (Novelli et al., 2022), which links each metastable state to physically
interpretable conformational descriptors. Our analysis aligns perfectly with (Novelli et al., 2022),
where the slowest metastable state corresponds to the folding-unfolding transition and is linked to
the distance between residues (1, 10) and (2, 9) located at opposite ends of the protein. Additionally,
the immediately faster metastable state represents a conformational change within the folded state,
characterized by the relative angle between residues 6 and 8.

In Fig. 9 we plot how the structure of Chignolin changes while performing a folding transition,
while in Fig. 7 we plot the implied timescales of the dynamical modes of Chignolin as estimated by
DPNets-relaxed and Nyström-PCR.

30

Chignolin folding transition

❖ Noisy Logistic map

❖ 1D triple well potential Langevin dynamics

❖ Fluid flow around cylinder

❖ Folding of a mini-protein in water



What about theory?

Fundamental  
Statistical Limit

Bias

Optimisation Error 

Statistical Error 

̂ℙ θ[Y ∈ B | X ∈ A] − ℙ[Y ∈ B | X ∈ A] = Oℙ
1

n
+

ℙ[Y ∈ B]
ℙ[X ∈ A] (σ⋆

d+1 + ℰθ + d/n)

Key advantages of representation learning + regression:

(1) It extracts statistics directly from the trained operator without retraining 
    or resampling

(2) We get best of both worlds kernel methods (strong statistical theory)  
    and DL (representation power of NN architectures)



Physics-informed learning with the generator
✦ Family of TOs  , forms a continuous semigroup characterised by the infinitesimal generator (IG) 

  , an unbounded operator with  given by

At : ℒ2
π(𝒳)→ℒ2

π(𝒳), t ≥ 0
L= lim

t→0+
(At−I)/t :ℒ2

π(𝒳)→ℒ2
π(𝒳) dom(L) = {f ∈ ℒ2

π | ∑i∈[d]∥∂i f∥2
ℒ2

π
<∞}

(Lf )(x) = ∇f(x)⊤a(x)+ 1
2 Tr[b(x)⊤(∇2f(x))b(x)], ∀f ∈ dom(L)

✦ When the process is additionally time reversal invariant, IG is self-adjoint operator that introduces kinetic energy kernel, 
which often can be written in the Dirichlet form s : ℝd → ℝp

𝔈π[ f, g] = − ⟨ f, Lg⟩ℒ2
π
= ∫

𝒳
∇f(x)⊤s(x)s(x)⊤ ∇g(x)π(dx) 𝔈X∼π f(X) = 𝔼X∼π∥s(X)⊤ ∇f(X)∥2

✦ Solving an SDE: from IG to TO and back with IG’s exponential and resolvent operator, both bounded operators 

At = etL Rμ = (μI − L)−1 = ∫ +∞
0

At e−μt dt, μ > 0

✦ Spectral decomposition of IG allows one to efficiently handle both, that is  implies L=∑∞
i=0 λi fi ⊗ fi

(μI − L)−1 = ∑∞
i=0

νi

(μ−λi)−1 fi ⊗ fi 𝔼[ f(Xt) | X0 = x] = ∑i∈ℕ eλi t ⟨ f, fi⟩ℒ2
π

fi(x) (∀f ) (∀x) (∀t)
✦ Hence, to build kinetic models we need to learn leading eigenpairs of IG. Since the obvious choice of Galerkin projections 

 suffers from spurious spectral estimation due to unbounded nature of , we approach the problem through the resolvent. L



Physics-informed learning with the generator

What is the good choice of geometry to make efficient and reliable algorithms ?

Estimation error: 

    ≤ ∥(I−Pℋ)Aπ|ℋ
∥ℋ→𝒲 + ∥PℋRμ|ℋ

−Ĝ∥ℋ→𝒲

Representation error Estimator’s error 

ℰ(Ĝ)=∥Rμ|ℋ
−Ĝ∥ℋ→𝒲

Metric distorsion:ℰ(Ĝ) η(ĥi)|νi − ̂νi | ≤ ∥ĥi∥ℋ / ∥ĥi∥𝒲

 Projection operator:  Pℋ f = argminh∈ℋ ∥f − h∥𝒲, f ∈dom(L)

ℋ ℋ

ℒ2
π ℒ2

π

PℋRμ|ℋ

Ĝ

𝒲𝒲

✦ When estimating the largest eigenvalues of the resolvent  , the quality of estimator’s decomposition  is 
determined by the alignment of norms in the domain  and  and the estimation error.

Rμ fi =νi fi Ĝĥi = ̂νiĥi
𝒲={f ∈ dom(L) | ∥f∥𝒲 < ∞} ℋ



Physics-informed learning with the generator

Estimation error: 

    ≤ ∥(I−Pℋ)Aπ|ℋ
∥ℋ→𝒲 + ∥PℋRμ|ℋ

−Ĝ∥ℋ→𝒲

Representation error Estimator’s error 

ℰ(Ĝ)=∥Rμ|ℋ
−Ĝ∥ℋ→𝒲

Metric distorsion:ℰ(Ĝ) η(ĥi)|νi − ̂νi | ≤ ∥ĥi∥ℋ / ∥ĥi∥𝒲

 Projection operator:  Pℋ f = argminh∈ℋ ∥f − h∥𝒲, f ∈dom(L)

ℋ ℋ

ℒ2
π ℒ2

π

PℋRμ|ℋ

Ĝ

𝒲𝒲

✦ When estimating the largest eigenvalues of the resolvent  , the quality of estimator’s decomposition  is 
determined by the alignment of norms in the domain  and  and the estimation error.

Rμ fi =νi fi Ĝĥi = ̂νiĥi
𝒲={f ∈ dom(L) | ∥f∥𝒲 < ∞} ℋ

✦ Chosen geometry of  leads to the notion of energy based risk functional

 

 that balances the inverse , and can be efficiently empirically minimised in closed form 

dom(L)

ℛ(G)=∥R1/2
μ −R−1/2

μ G∥2
HS(ℋ,ℒ2

π)

ℛ(G)=𝔈μ
X∼π ∥ χμ(X)−G*ϕ(X)∥2

ℋ =∥Rμ−G∥2
HS(ℋ,𝒲)

✦ Since  is bounded we can learn it via regression in RKHS, however computing its action by inverting, i.e. integral transform 
is not feasible! So, we fight fire with fire by adapting 

Rμ
𝒲

∥f∥2
𝒲 =⟨ f, (μI−L)f⟩ℒ2

π
=𝔼X∼π[μ | f(x) |2+∥s(x)⊤ ∇f(x)∥2] =: 𝔈μ

X∼π f(X)



Physics-informed learning with the generator

2D Langevin 1D Langevin SDECox-Ingersoll-Ross

IG vs TO sample efficiency 
non-spurious spectra

learning rates

Figure 1: a) Empirical biases ŝ1 = ω̂1 ε̂1 and estimation of the first (nontrivial) eigenfunction of the
IG of a Langevin process under a four well potential. Ground truth is black, our method RRR is
red and blue for two di!erent kernel lengthscales. b) Eigenvalue estimation for the same process
compared to the methods in [15, 1], for which eigenvalue histogram in blue shows spuriousness. c)
Estimation of the second eigenfunction of a Langevin process under Muller brown potential (white
level lines) by RRR, Transfer Operator (TO) in d) and ground truth in e). Observe that TO fails to
recover the metastable state. f) Prediction RMSE for the CIR model.

empirical bias leads to wrong operator. Compared to KRR [15, 1], there is no spuriousness in the
estimation of our eigenvalues, as shown in panel b).

Muller Brown potential We next study Langevin dynamics under more challenging conditions:
the Muller brown potential. Figure 1(c-e) depicts the second eigenfunction obtained by our method
compared to the ground truth one and that found by the transfer operator approach, with the same
number of samples. Notably, our physics informed approach outperforms transfer operator learning
for this task. Note that with di!erent lag times, we were able to recover this second eigenfunction.

CIR model Finally, we show with the CIR model that our method is not limited to Langevin
process with constant di!usion. For this process, the conditional expectation of the state Xt is
analytically known. We can thus compare the prediction of our model with respect to this expectation
using root mean squared error (RMSE) and compute it for di!erent number of samples to validate
our bounds. Conditional expectation were computed on 100 di!erent simulations at t = ln(2)/a
which corresponds to the half life of the mean reversion. Results are shown in panel d) Figure 1.

7 Conclusion

We developed a novel energy-based framework for learning the Infinitesimal Generator of stochastic
di!usion SDEs using kernel methods. Our approach integrates physical priors, achieves fast error
rates, and provides the first spectral learning guarantees for generator learning. A limitation is its
computational complexity, scaling as n2d2. Future work will explore alternative methods to enhance
computational e"ciency and investigate a broader suite of SDEs beyond stochastic di!usion.

11

eigenfunction estimation

Cabbanes & Bach 2024 Hou et al. 2024 Pillaud-Vivien & Bach 2023

✦ Summary of guarantees for RRR with universal bounded kernel compared to SOTA



❖ PI representation learning (time-reversal invariant process in equilibrium)

✦ EMY principle w.r.t.  
energy norm 

✦ Learns kinetic model  
from static data

✦ Neatly combined with 
enhanced sampling  
(control the process   
to discover  meta-stable 
states)

Physics-informed learning with the generator

✦ We tested our method on a 1  long biased simulation and compared it 
to the results obtained when training on a 107  unbiased simulation 

μs
μs
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