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This is remarkably elegant via transfer operators theory!
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• Spoiler Alert:

    For geometrically ergodic processes and MMD norm the answer is YES!
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j fj(x) ⟨gj, f⟩L2π(𝒳)

 the expectation of an observable is disentangled into temporal and static components

LA



Learning the operator and its spectra



Learning the operator and its spectra
•  Since we don’t know  we restrict  to a chosen RKHS  and look for an 

operator  such that  that is
L2

π(𝒳) Aπ ℋ
G : ℋ→ℋ Aπ⟨w, ϕ( ⋅ )⟩≈⟨Gw, ϕ( ⋅ )⟩,

L2
π(𝒳) L2

π(𝒳)

G
ℋ ℋ

Aπ



Learning the operator and its spectra
•  Since we don’t know  we restrict  to a chosen RKHS  and look for an 

operator  such that  that is
L2

π(𝒳) Aπ ℋ
G : ℋ→ℋ Aπ⟨w, ϕ( ⋅ )⟩≈⟨Gw, ϕ( ⋅ )⟩,

ℛ(G) = 𝔼Xt∼π ∥ϕ(Xt+1) − G*ϕ(Xt)∥2
L2

π(𝒳) L2
π(𝒳)

G
ℋ ℋ

Aπ



Learning the operator and its spectra
•  Since we don’t know  we restrict  to a chosen RKHS  and look for an 

operator  such that  that is
L2

π(𝒳) Aπ ℋ
G : ℋ→ℋ Aπ⟨w, ϕ( ⋅ )⟩≈⟨Gw, ϕ( ⋅ )⟩,

ℛ(G) = 𝔼Xt∼π ∥ϕ(Xt+1) − G*ϕ(Xt)∥2
L2

π(𝒳) L2
π(𝒳)

G
ℋ ℋ

Aπ

Ghi = λihi ⇒ ∥(λi I − Aπ)−1∥−1 ≤ ∥Aπhi − λihi∥L2π(𝒳) ≤ ∥Aπ|ℋ
− G∥ℋ→L2π(𝒳)

ℰ(G)

∥hi∥ℋ
∥hi∥L2π(𝒳)

operator norm error
metric 
distorsion



Learning the operator and its spectra
•  Since we don’t know  we restrict  to a chosen RKHS  and look for an 

operator  such that  that is
L2

π(𝒳) Aπ ℋ
G : ℋ→ℋ Aπ⟨w, ϕ( ⋅ )⟩≈⟨Gw, ϕ( ⋅ )⟩,

ℛ(G) = 𝔼Xt∼π ∥ϕ(Xt+1) − G*ϕ(Xt)∥2
L2

π(𝒳) L2
π(𝒳)

G
ℋ ℋ

Aπ

Ghi = λihi ⇒ ∥(λi I − Aπ)−1∥−1 ≤ ∥Aπhi − λihi∥L2π(𝒳) ≤ ∥Aπ|ℋ
− G∥ℋ→L2π(𝒳)

ℰ(G)

∥hi∥ℋ
∥hi∥L2π(𝒳)

operator norm error
metric 
distorsion

SLT

∥𝔼[h(Xt+1) | Xt = ⋅ ] − Gh∥ ≤ ℰ(G)∥h∥ℋ
one-step ahead prediction 
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How to generalise beyond one-step ahead?

1.  Review some Linear Algebra tools on understanding linear dynamics

2. Based on these ideas develop Deflate-Learn-Inflate (DLI) approach 

3. Use error decomposition techniques and concentration inequalities
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L. N. Trefethen, M. Embree. Spectra and Pseudospectra: The Behavior of NonnormaI Matrices and Operators. 
Princeton Uni. Press 2005.
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Consistent Long-Term Forecasting of Ergodic Dynamical Systems

Figure 2. Asymptotically stable operators: For a non-normal op-
erator A (i.e. AA⇤ 6=A⇤A) that is also asymptotically stable (i.e.
⇢(A)< 1), the function t 7! kAtk exhibits a transient growth,
captured by the Kreiss constant ⌘(A), before converging to zero at
the linear rate ⇢(A).

As stated in (Kostic et al., 2022, Thm. 1), the control of the
one-step-ahead error (8) is not enough to guarantee good
forecasting for long time-horizons. Indeed,

kE[h(Xt) |X0 = ·]� S⇡
bGt
hkL2

⇡(X )  Et(
bG) khkH,

where Et(
bG) := kA

t

⇡
S⇡ � S⇡

bGt
k, t 2 N is the error in-

duced by the power of the estimator.

After some algebra one verifies that A
t

⇡
S⇡ � S⇡

bGt
=P

t�1

k=0
A

k

⇡
(A⇡S⇡ � S⇡

bG) bGt�1�k. Hence applying the
norm we have that

Et(
bG)  min{s(A⇡) p(

bG), s( bG) p(A⇡)} E(
bG), (9)

where for an operator A we define

s(A) :=

1X

t=0

kA
t
k and p(A) := sup

t2N0

kA
t
k. (10)

Therefore, to obtain long-term consistent forecasting, apart
from bounding the error (8), the two quantities in (10) also
need to be bounded. Unfortunately, whenever ⇢(A) = 1 we
have that s(A) = +1. Hence, recalling (5), for a consistent
estimator bG of A⇡ we have that s(A⇡) = 1 and s( bG) !

1 with the number of samples, presenting a difficulty in
obtaining bounds on the infinite time-horizons. Moreover,
whenever the leading eigenvalue is not perfectly estimated
as 1, long term forecasting either explodes (⇢( bG) > 1) or
collapses to zero (⇢( bG) < 1). In order to overcome this
issue, we resort to well-known concepts in the study of
asymptotically stable linear dynamical systems in a Hilbert
space, see e.g. (Trefethen & Embree, 2020).

For a bounded linear operator A such that ⇢(A) < 1 we have
that limt!1kA

t
k = 0, but, depending on the normality

of the operator, the convergence might not be monotone.
Namely, if A is a normal operator, that is AA⇤

= A
⇤
A, then

kA
t
k = [⇢(A)]

t, as illustrated by the blue line in Figure 2,
and consequently, p(A) = 1 and s(A) = 1/(1�⇢(A)).

Moreover, in this case 1/s(A) coincides with the distance
to instability of A,

d(A) := inf
z2C, |z|�1

k(A�zI)
�1

k
�1 (11)

that measures the distance of the operator’s spectra to the
unit circle relative to its sensitivity to perturbations, which
for normal operators equals 1�⇢(A).

On the other hand, as illustrated by the red line in Figure 2,
when A is a non-normal operator, the sequence (kAt

k)t2N0

may exhibit a transient growth before converging to zero,
that can be estimated by ⌘(A)  p(A)  (e/2)[⌘(A)]

2 (El-
Fallah & Ransford, 2002), where ⌘(A) is the the Kreiss
constant of A defined as

⌘(A) := sup

z2C, |z|>1

(|z|�1)k(A�zI)
�1

k � 1. (12)

For highly non-normal operators ⌘(A) � 1, indicating
a large transient growth, which is also related to much
smaller distance to instability d(A) ⌧ 1� ⇢(A), and
larger cumulative effect s(A) � 1/(1� ⇢(A)). Never-
theless, the latter quantity always remains bounded, since
due to lim sup

t!1
kA

t
k
1/t

= ⇢(A) < 1, there exists the
smallest integer ` such that kA`

k < 1, and, consequently,
s(A) 

1

1�kA`k

kAk
`
�1

kAk�1
< 1.

Therefore, a promising approach to derive forecasting
bounds independent of the time-horizon is to transform
the learning objective from nonexpansive (kAk = 1) to
asymptotically stable (⇢(A) < 1), which we introduce in
the following section. To

4. Deflate-Learn-Inflate (DLI) Estimators
In section we present a conceptually simple estimator ag-
nostic method which overcomes the long term forecasting
failure of standard KOR estimators. It consists of three
steps: i) Remove the leading eigenvalue from the transfer
operator (deflate); ii) Compute an estimator from data using
centered features (learn); iii) Evolve the observable with
such estimator and correct it using the averages over training
data-points (inflate). We proceed to explain each of these
steps in turn.

Deflate The first step is a classical idea in the field of nu-
merical methods for eigenvalue problems, see, e.g., (Saad,
2011). In our context, recalling (5), it consists of remov-
ing (deflating) the known eigenpair (1, 1⇡) of the Koopman
operator A⇡, in order to better estimate the unknown ones.
Since the leading Koopman eigenvalue �1(A⇡) = 1 is sim-
ple, its corresponding spectral projector is 1⇡ ⌦ 1⇡. The
corresponding deflated operator is

A⇡ := A⇡ � 1⇡ ⌦ 1⇡ = A⇡J⇡ = J⇡A⇡, (13)
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Figure 2. Asymptotically stable operators: For a non-normal op-
erator A (i.e. AA⇤ 6=A⇤A) that is also asymptotically stable (i.e.
⇢(A)< 1), the function t 7! kAtk exhibits a transient growth,
captured by the Kreiss constant ⌘(A), before converging to zero at
the linear rate ⇢(A).

As stated in (Kostic et al., 2022, Thm. 1), the control of the
one-step-ahead error (8) is not enough to guarantee good
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constant of A defined as
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bounds independent of the time-horizon is to transform
the learning objective from nonexpansive (kAk = 1) to
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the following section. To

4. Deflate-Learn-Inflate (DLI) Estimators
In section we present a conceptually simple estimator ag-
nostic method which overcomes the long term forecasting
failure of standard KOR estimators. It consists of three
steps: i) Remove the leading eigenvalue from the transfer
operator (deflate); ii) Compute an estimator from data using
centered features (learn); iii) Evolve the observable with
such estimator and correct it using the averages over training
data-points (inflate). We proceed to explain each of these
steps in turn.

Deflate The first step is a classical idea in the field of nu-
merical methods for eigenvalue problems, see, e.g., (Saad,
2011). In our context, recalling (5), it consists of remov-
ing (deflating) the known eigenpair (1, 1⇡) of the Koopman
operator A⇡, in order to better estimate the unknown ones.
Since the leading Koopman eigenvalue �1(A⇡) = 1 is sim-
ple, its corresponding spectral projector is 1⇡ ⌦ 1⇡. The
corresponding deflated operator is
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(Aπ f )(x) = 𝔼[ f(Xt+1) | Xt = x ]Aπ : L2
π(𝒳) → L2

π(𝒳)

• Recalling the transfer operator

Aπ1π = A*π 1π = 1π ρ(Aπ) = ∥Aπ∥ = 1

• Process is geometrically ergodic iff trivial leading eigeinvalue is simple

Aπ := Aπ − 1π ⊗ 1π ⟹ ρ(Aπ) < 1 ∧ qt−1π =A*π (qt−1−1π)

• Remove (deflate) the trivial spectral component while keeping the rest untacked
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• Given a sample  we learn  via the empirical risk:(xi, yi := xi+1)n
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εn = n− α
2(α + β)
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❖ for the choice of universal kernels, we analyse one step 
ahead error with vector-valued regression analysis 

❖ using perturbation bounds we concentrate the Kreiss 
constant of the estimator

❖ we additionally concentrate KMEs and obtain 
maximum mean discrepancy (MMD) error bound With probability at least  in 

the observed training data the 
estimation error is bounded by 

1 − δ
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adapt Theorem 5.4 to bounding the MMD error between
distributions as follows.

Theorem 6.1. Under the assumptions of Theorem 5.4 for
every q0 2 L

2

⇡
(X ) and t 2 N, with probability at least 1��

w.r.t. iid samples Dn according to ⇡ and samples (zi)i2[n0]

from the initial distribution µ0, it holds

kbµt � µtkH⇤ C

0

@ ln(�
�1

)

n
↵

2(↵+�)

+

s
ln ��1

n0 ^ n

1

A ,

where constant C additionally depends on kq0k.

According to Thm. 6.1, the DLI paradigm enables learning
operators that can reliably forecast future state distributions,
uniformly over time. Notice that in practice, we can easily
sample from µ0, so we can make n0 � n and then the
dominating term in (6.1) is "?

n
, which depends only on the

properties of kernel embedding and transfer operator.

Finally, an outstanding property of DLI estimators of state
distributions is the preservation of the probability mass
along all trajectory, since it holds that

P
j2[n]

mt,j=1 due
to the properties of the projector Jn.

7. Experiments
In this section, we compare the standard RRR estimator
to its DLI-enhanced counterpart. Our results indicate that
the DLI paradigm boosts the performance of the bare RRR
model in long-term forecasting across the board.

CIR Model The Cox–Ingersoll–Ross (Cox et al., 1985)
model (CIR) pertains to the field of mathematical finance
and is routinely used to describe the evolution of interest
rates. The CIR model characterizes the instantaneous in-
terest rate rt through the stochastic differential equation
drt = a(b�rt)dt + �

p
rtdWt, where Wt is a Wiener pro-

cess. In the CIR model, the interest rate adjusts to the mean
b with a speed a. The volatility is described by � and by the
value of the rate itself through the term

p
rt. For the CIR

model, the conditional expectation of the state E [rt | r0= ·]

and its variance V [rt | r0= ·] are known analytically (see
Appendix). In Table 1 we report the root mean square error
of RRR and DLI-RRR in estimating the conditional expec-
tation and conditional variance. For both quantities, the
DLI estimator attains smaller errors. Conditional mean and
variance are estimated at t = ln 2/a, corresponding to the
half-life of the mean reversion, and are averaged over 100
independent models trained on datasets of 500 points each.
For this example we have set a = 2.5, b = 1.0 and � = 0.5.
To simulate the CIR model we discretized the stochastic
differential equation with �t = 0.01.

Ornstein-Uhlenbeck Model We study the uniformly sam-
pled Ornstein-Uhlenbeck process dXt = �✓Xtdt+ �dWt,

Observable RRR DLI-RRR
E [rt | r0 = ·] 0.0691 ± 0.0333 0.0673 ± 0.0328
V [rt | r0 = ·] 0.0470 ± 0.0413 0.0124 ± 0.0051

Table 1. RMSE in estimating conditional expectation and variance
of the CIR model (100 independent training datasets).
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We investigate the equilibration of an Ornstein-Uhlenbeck
process with initial condition X0 drawn from a Gaussian
mixture with means {�2, 2} and variances {0.04, 0.04}, re-
spectively. In Figure 3 we report the predicted probability
flow, as well as the relative MMD kbµt � µtk
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attained by DLI and uncentered estimators. Note that the
DLI paradigm leads to a consistent improvement in fore-
casting performance throughout the entire trajectory. Notice
how the MMD error exhibits a transient growth for both
the RRR model and its DLI version during the short-term
forecasting. Recalling Figure 2, this effect is present due
to the non-normality of the estimators in the chosen RKHS
space, in concordance with our theoretical analysis.

Figure 3. Distribution forecasting: Relative MMD error for the
OU process for 100 independent experiments (thin lines).

Angles of Alanine Dipeptide We assess the forecasting
performance of DLI estimators on a dataset of molecular
dynamics simulations for the small molecule Alanine Dipep-
tide (Wehmeyer & Noé, 2018). The data comprises three
independent 250 ns simulations, each containing records
of the atomic positions, distances, and backbone dihedral
angles. We train the estimators on 100 independent sub-
samples — each 5000 points long — from one of the pro-
vided trajectories. We have used the 45 pairwise atomic
distances as input features and forecasted the two backbone
dihedral angles, dubbed � and  in the scientific commu-
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adapt Theorem 5.4 to bounding the MMD error between
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where constant C additionally depends on kq0k.
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n
, which depends only on the

properties of kernel embedding and transfer operator.
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P
j2[n]

mt,j=1 due
to the properties of the projector Jn.
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nity, over a forecast horizon of 0.1 ns. The angles � and
 are well known to encode the long-term behavior of the
system, making them a perfect set of observables for the
task of long-term forecasting. In Figure 1 we report the
forecasting Mean Absolute Error (MAE) for � and  over a
test set of 5000 points. The MAE has been computed using
the minimum image convention, as angles are 2⇡-periodic
observables. It is interesting to note how DLI estimators
not only achieve a smaller error but also a significantly
smaller variance across independent samplings of the train-
ing dataset. This is a key benefit of our methodology, as
minimizing forecast uncertainty is crucial for strengthening
risk management in strategic planning. We remark that, as
usual, the forecasting error contains an irreducible compo-
nent given by the intrinsic stochasticity of the process (see
Appendix B.6). This additive component, however, is the
same in both estimators.

Atomic Positions of Alanine Dipeptide While the dihe-
dral angles are a quantity of interest specifically for Alanine
Dipeptide, the mean squared deviation (MSD) of atomic
positions is the crucial metric in molecular dynamics sim-
ulations, providing valuable insights into the stability and
dynamics of molecular systems. It quantifies the average
displacement of atoms from their initial positions over a
given period, reflecting the extent of structural fluctuations.
Thus, we additionally compare DLI estimators with a classi-
cal uncentered kernel approach in forecasting the expected
atomic MSD, particularly at long timescales. Our results,
depicted in Figure 4, demonstrate that the DLI method out-
performs the classical method in predicting the equilibrium
atomic MSD (t ! 1).

Figure 4. Forecasting the Mean Square Deviation (MSD) of atomic
positions in Alanine Dipeptide. Notice the log-log scale.

8. Conclusions
In this paper, we have studied data-driven approaches for
the long-term forecasting of ergodic discrete dynamical sys-
tems. These systems, which may be either deterministic
or stochastic, are fully represented by the associated Koop-
man or transfer operator. We focused on the problem of
predicting the conditional mean, conditional variance as
well as the flow of state distributions from an initial one.
Motivated by the observation that mainstream KOR esti-
mators may fail at this task, we presented a conceptually
simple and statistically principled approach which solves
the above problem. Our theoretical analysis offers novel
insights into the importance of estimator non-normality in
long-term forecasting, contributing to a more comprehen-
sive statistical learning theory for dynamical systems. A
compelling feature of our method is its agnostic nature to-
wards the KOR estimator. While it offers the advantages
of low computational complexity and seamless integration
with standard kernel methods, further research is needed
in order to study the robustness of different DLI enhanced
estimators, each one having its own raison-d’etre. Recalling
Rem. 5.5, current theoretical analysis is limited to geomet-
rically ergodic processes and universal kernels for which
the Koopman operator is sufficiently regular w.r.t. associ-
ated RKHS. In the future it would be interesting to extend
it to more general settings. In particular, continuous-time
systems with non-unique invariant distribution, as well as
tackle non-stationary processes.
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Figure 1. Mean Absolute Error (MAE) in forecasting the backbone
dihedral angles of Alanine Dipeptide. Data points are 10�3 ns
apart.

In this work we propose a paradigm to inject this prior
knowledge into existing kernel-based algorithms, producing
estimators which accurately forecast the long-term behav-
ior of observables of the system. Figure 1 illustrates the
benefit of such estimator on a molecular dynamics simula-
tions experiment, in which we wish to forecast the dihedral
angles of the Alanine Dipeptide (Wehmeyer & Noé, 2018)
molecule over a long time horizon. The figure shows that
the forecasting error of a state-of-the-art operator regression
estimator deteriorates as the forecasting horizon increases.
In contrast, when the same estimator is augmented by our
deflate-learn-inflate (DLI) method, the forecasting error
remains uniformly bounded in time, as predicted by our
theoretical analysis.

It is worth mentioning that our DLI approach closely relates
to the centering of covariance operators, a feature explored
in Koopman operator learning, as detailed in (Mardt et al.,
2018; Seenivasaharagavan et al., 2023). Although centering
has been observed to enhance algorithm performance, the
development of an end-to-end paradigm and guarantees for
long-term forecasting remain open challenges.

Contributions Our natural approach builds upon estab-
lished ideas like deflating and centering, and can be seam-
lessly integrated into any KOR estimator utilizing empirical
risk minimization to enhance long-term forecasting. Yet, our
principal contribution is to derive the first non-asymptotic
forecasting error bounds that hold uniformly over the time
horizons. We focus both on forecasting the conditional
mean of any observable and the state distributions from an
initial one.

Paper Organization Section 2 briefly reviews Koopman
operators and their estimators. Section 3 introduces the long-
term forecasting problem alongside key quantities used to
characterized the error induced by the estimators studied

in the paper. In Section 4, we present the DLI approach
and discuss its implementation, while Section 5 contains
our theoretical guarantees. Section 6 addresses long-term
distribution forecasting. Finally, in Section 7 we present
numerical experiments with our approach.

Notations If H is a separable Hilbert space, and (ei)i2N

an orthonormal basis, we let HS (H) be the Hilbert space
of Hilbert-Schmidt (HS) operators on H endowed with the
norm kAk

2

HS
⌘

P
i2N kAeik

2

H
, for A 2 HS (H). For any

bounded operator A on H, we denote by ⇢(A) and kAk the
spectral radius and operator norm of A respectively. Note
that ⇢(A)  kAk (see e.g. Trefethen & Embree, 2020).
Finally, for two measures µ and ⌫, µ ⌧ ⌫ means that µ is
absolutely continuous w.r.t. ⌫, in which case dµ/d⌫ denotes
the Radon-Nikodym derivative.

2. Background
In this section, we give some background on transfer opera-
tors (Lasota & Mackey, 1994) and their empirical estima-
tors (Kostic et al., 2022). Throughout the paper we study
discrete stochastic dynamical systems, (Xt)t2N, where
the state at time t 2 N forms a random variable Xt

with law µt, taking values in a measurable space X , en-
dowed with �-algebra ⌃X . We assume that the sequence
(Xt)t2N is a time-homogeneous Markov process, that is
P[Xt+1 | (Xs)

t

s=0
] = P[Xt+1 |Xt], and there exists a tran-

sition kernel p : X ⇥ ⌃X ! [0, 1], such that, for every
(x,B) 2 X ⇥ ⌃X and t 2 N,

P[Xt+1 2 B |Xt = x] = p(x,B).

We further assume that the dynamical system is uniquely
ergodic, that is, there exists a unique probability distribution
⇡, called invariant measure, such that if X0 ⇠ ⇡, then
Xt ⇠ ⇡, for every t 2 N.

Koopman Operator The above dynamical systems are
general enough to capture several important phenomena, in-
cluding (discretized) Langevin dynamics (Davidchack et al.,
2015) or other systems constructed from the discretization
of stochastic differential equations. They can be studied
via Markov operators, and, in particular with forward trans-
fer operators A⇡ : L

2

⇡
(X ) ! L

2

⇡
(X ) defined on the space

L
2

⇡
(X ) formed by square integrable functions w.r.t. the

invariant measure as

[A⇡f ](x) := E[f(Xt+1) |Xt = x], x 2 X , t 2 N. (1)

Due to their prominence in the data-driven (determinis-
tic) dynamical systems community (see e.g. Brunton et al.,
2022), we also call A⇡ the (stochastic) Koopman operators.

The significance of Koopman operators lies in their ability
to effectively linearize the underlying Markov processes.
Namely, for every observable f 2 L

2

⇡
(X ), computing its

2

Example 2. The spectral decomposition
The small molecule alanine dipeptide

The dihedral angles  and  characterize 
the long-time behaviour of the molecule.


This should be reflected in the leading 
eigenfunctions of the Koopman operator. 
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