Consistent Long-Term Forecasting of geometrically ergodic dynamical systems *linear algebra tools in the service of statistical machine learning*

Karim Lounici Pietro Novelli Prune Inzerili Massimiliano Pontil

DS are backbone mathematical models of temporally evolving phenomena

DS are backbone mathematical models of temporally evolving phenomena

Paradigm shift in Sci & Eng:

- Classical approach: ODE/PDE/SDE models + parameter fitting

• ML approach: Can we build dynamical models purely from the observed data?

DS are backbone mathematical models of temporally evolving phenomena

Paradigm shift in Sci & Eng:

- Classical approach: ODE/PDE/SDE models + parameter fitting

This is remarkably elegant via transfer operators theory!

• ML approach: Can we build dynamical models purely from the observed data?

• We focus on discrete time homogenous Markov process:

$$(X_t)_{t\geq 0} \subseteq \mathscr{X}, \quad X_t \sim \mu_t, \quad \mathbb{P}\left[X_{t+1} \mid X_1, \dots, X_t\right] = \mathbb{P}\left[X_{t+1} \mid X_t\right] \text{ independent of}$$

• We focus on discrete time homogenous Markov process:

$$(X_t)_{t\geq 0} \subseteq \mathscr{X}, \quad X_t \sim \mu_t, \quad \mathbb{P}\left[X_{t+1} | X_1, \dots, X_t\right] = \mathbb{P}\left[X_{t+1} | X_t\right] \text{ independent of}$$

• Question:

Given the trajectory data $\mathscr{D}_n = (x_i)_{i \in [n]}$ from one realisation of the process, and given a sample $\mathscr{D}_{n_0}^0 = (z_i)_{i \in [n_0]}$ from some arbitrary μ_0 can we find the learning algorithm that produces $\hat{\mu}_t$ s.t. $\|\mu_t - \hat{\mu}_t\| \leq \varepsilon(n)$ w.h.p independently of $t \in \mathbb{N}$?

• We focus on discrete time homogenous Markov process:

$$(X_t)_{t\geq 0} \subseteq \mathscr{X}, \quad X_t \sim \mu_t, \quad \mathbb{P}\left[X_{t+1} | X_1, \dots, X_t\right] = \mathbb{P}\left[X_{t+1} | X_t\right] \text{ independent of}$$

• Question:

Given the trajectory data $\mathscr{D}_n = (x_i)_{i \in [n]}$ from one realisation of the process, and given a sample $\mathscr{D}_{n_0}^0 = (z_i)_{i \in [n_0]}$ from some arbitrary μ_0 can we find the learning algorithm that produces $\hat{\mu}_t$ s.t. $\|\mu_t - \hat{\mu}_t\| \leq \varepsilon(n)$ w.h.p independently of $t \in \mathbb{N}$?

• Spoiler Alert:

For geometrically ergodic processes and MMD norm the answer is YES!

• Consider stable stochastic dynamics with the invariant measure π

 $X_t \sim \mu_t \wedge \mu_0 = \pi \implies \mu_t = \pi, t \in \mathbb{N}$

• Consider stable stochastic dynamics with the invariant measure π

 $\left(X_t \sim \mu_t \land \mu_0 = \pi \implies \mu_t = \pi, t \in \mathbb{N} \right) \left(\forall \mu_0 \quad \mu_t \rightarrow \pi \right)$

• The forward transfer operator evolves observables $f: \mathcal{X} \to \mathbb{R}$:

 $A_{\pi}: L^2_{\pi}(\mathcal{X}) \to L^2_{\pi}(\mathcal{X}) \quad (A_{\pi}f)(x) = \mathbb{E}[f(X_{t+1}) \mid X_t = x]$

• Consider stable stochastic dynamics with the invariant measure π

 $X_t \sim \mu_t \wedge \mu_0 = \pi \implies \mu_t = \pi, t \in \mathbb{N} \quad \forall \mu_0 \quad \mu_t \to \pi$

• The forward transfer operator evolves observables $f: \mathcal{X} \to \mathbb{R}$:

 $A_{\pi}: L^{2}_{\pi}(\mathcal{X}) \to L^{2}_{\pi}(\mathcal{X}) \quad (A_{\pi}f)(\mathcal{X})$

• The backward transfer operator evolves distributions $q_t := d\mu_t/d\pi \in L^2_{\pi}(\mathcal{X})$

$$x) = \mathbb{E}[f(X_{t+1}) \mid X_t = x]$$

• Consider stable stochastic dynamics with the invariant measure π

$$X_t \sim \mu_t \wedge \mu_0 = \pi \implies \mu_t = \pi, t \in \mathbb{N} \quad \forall \mu_0 \quad \mu_t \to \pi$$

• The forward transfer operator evolves observables $f: \mathcal{X} \to \mathbb{R}$:

$$A_{\pi}: L^2_{\pi}(\mathcal{X}) \to L^2_{\pi}(\mathcal{X}) \quad (A_{\pi}f)(x) = \mathbb{E}[f(X_{t+1}) \mid X_t = x]$$

• The backward transfer operator evolves distributions $q_t := d\mu_t/d\pi \in L^2_{\pi}(\mathcal{X})$

 $\langle \boldsymbol{q}_t, \boldsymbol{f} \rangle_{L^2_{\pi}(\mathcal{X})} = \mathbb{E}[f(X_t)] = \mathbb{E}[\mathbb{E}[f(X_t) | X_{t-1}]] = \langle \boldsymbol{q}_{t-1}, \boldsymbol{A}_{\pi} \boldsymbol{f} \rangle_{L^2_{\pi}(\mathcal{X})} = \langle \boldsymbol{A}_{\pi}^* \boldsymbol{q}_{t-1}, \boldsymbol{f} \rangle_{L^2_{\pi}(\mathcal{X})}$

• Consider stable stochastic dynamics with the invariant measure π

$$X_t \sim \mu_t \wedge \mu_0 = \pi \implies \mu_t = \pi, t \in \mathbb{N} \quad \forall \mu_0 \quad \mu_t \to \pi$$

• The forward transfer operator evolves observables $f: \mathcal{X} \to \mathbb{R}$:

$$A_{\pi}: L^2_{\pi}(\mathcal{X}) \to L^2_{\pi}(\mathcal{X}) \quad (A_{\pi}f)(x) = \mathbb{E}[f(X_{t+1}) \mid X_t = x]$$

• The backward transfer operator evolves distributions $q_t := d\mu_t/d\pi \in L^2_{\pi}(\mathcal{X})$

$$q_t = A_{\pi}^* q_{t-1} = (A_{\pi}^*)^t q_0$$
 Autor

 $\langle \boldsymbol{q}_t, \boldsymbol{f} \rangle_{L^2_{\pi}(\mathcal{X})} = \mathbb{E}[f(X_t)] = \mathbb{E}[\mathbb{E}[f(X_t) | X_{t-1}]] = \langle \boldsymbol{q}_{t-1}, \boldsymbol{A}_{\pi} \boldsymbol{f} \rangle_{L^2_{\pi}(\mathcal{X})} = \langle \boldsymbol{A}_{\pi}^* \boldsymbol{q}_{t-1}, \boldsymbol{f} \rangle_{L^2_{\pi}(\mathcal{X})}$

nomous Linear Dynamical System

• Consider stable stochastic dynamics with the invariant measure π

$$X_t \sim \mu_t \wedge \mu_0 = \pi \implies \mu_t = \pi, t \in \mathbb{N} \quad \forall \mu_0 \quad \mu_t \to \pi$$

• The forward transfer operator evolves observables $f: \mathcal{X} \to \mathbb{R}$:

$$A_{\pi}: L^2_{\pi}(\mathcal{X}) \to L^2_{\pi}(\mathcal{X}) \quad (A_{\pi}f)(x) = \mathbb{E}[f(X_{t+1}) \mid X_t = x]$$

• The backward transfer operator evolves distributions $q_t := d\mu_t / d\pi \in L^2_{\pi}(\mathcal{X})$

$$q_t = A_{\pi}^* q_{t-1} = (A_{\pi}^*)^t q_0$$
 Autor

 $\langle \boldsymbol{q}_t, \boldsymbol{f} \rangle_{L^2_{\pi}(\mathcal{X})} = \mathbb{E}[f(X_t)] = \mathbb{E}[\mathbb{E}[f(X_t) | X_{t-1}]] = \langle \boldsymbol{q}_{t-1}, \boldsymbol{A}_{\pi} \boldsymbol{f} \rangle_{L^2_{\pi}(\mathcal{X})} = \langle \boldsymbol{A}_{\pi}^* \boldsymbol{q}_{t-1}, \boldsymbol{f} \rangle_{L^2_{\pi}(\mathcal{X})}$

nomous Linear Dynamical System

LA

$\mathbb{P}[X_{t+1} | X_t = \cdot] \ll \pi \implies A_{\pi} \text{ is compact}$

Spectral Decomposition

$$\mathbb{P}\left[X_{t+1} \mid X_t = \cdot\right] \ll \pi$$

$$\mathbb{P}\left[X_{t+1} \mid X_t = \cdot\right] \ll \pi$$

$$\mathbb{E}[f(X_t) | X_0 = x] = (A_\pi^t f)$$

the expectation of an observable is disentangled into temporal and static components

operator $G: \mathcal{H} \to \mathcal{H}$ such that $A_{\pi}(w, \phi(\cdot)) \approx \langle Gw, \phi(\cdot) \rangle$, that is

• Since we don't know $L^2_{\pi}(\mathcal{X})$ we restrict A_{π} to a chosen RKHS \mathcal{H} and look for an

operator $G: \mathcal{H} \to \mathcal{H}$ such that $A_{\pi}(w, \phi(\cdot)) \approx \langle Gw, \phi(\cdot) \rangle$, that is

 $\mathscr{R}(G) = \mathbb{E}_{X_t \sim \pi} \| \phi(X_{t+1}) - G^* \phi(X_t) \|^2$

• Since we don't know $L^2_{\pi}(\mathcal{X})$ we restrict A_{π} to a chosen RKHS \mathcal{H} and look for an

operator $G: \mathcal{H} \to \mathcal{H}$ such that $A_{\pi}(w, \phi(\cdot)) \approx \langle Gw, \phi(\cdot) \rangle$, that is

 $\mathscr{R}(G) = \mathbb{E}_{X_t \sim \pi} \| \phi(X_{t+1}) - G^* \phi(X_t) \|^2$

 $Gh_i = \lambda_i h_i \implies \|(\lambda_i I - A_\pi)^{-1}\|^{-1} \le \|A_\pi h_i - \lambda_i h_i\|_{L^2_\pi(\mathcal{X})} \le \|A_\pi\|_{\mathscr{H}} - G\|_{\mathscr{H} \to L^2_\pi(\mathcal{X})}$

• Since we don't know $L^2_{\pi}(\mathscr{X})$ we restrict A_{π} to a chosen RKHS \mathscr{H} and look for an

operator $G: \mathcal{H} \to \mathcal{H}$ such that $A_{\pi}(w, \phi(\cdot)) \approx \langle Gw, \phi(\cdot) \rangle$, that is

 $\mathscr{R}(G) = \mathbb{E}_{X_t \sim \pi} \| \phi(X_{t+1}) - G^* \phi(X_t) \|^2$

 $Gh_i = \lambda_i h_i \implies \|(\lambda_i I - A_\pi)^{-1}\|^{-1} \le \|A_\pi h_i - \lambda_i h_i\|_{L^2_\pi(\mathcal{X})} \le \|A_\pi\|_{\mathscr{H}} - G\|_{\mathscr{H} \to L^2_\pi(\mathcal{X})}$ $\|\mathbb{E}[h(X_{t+1}) | X_t = \cdot] - Gh\| \le \mathscr{E}(G) \|h\|_{\mathscr{H}}$ one-step ahead prediction

• Since we don't know $L^2_{\pi}(\mathcal{X})$ we restrict A_{π} to a chosen RKHS \mathcal{H} and look for an

 $L^2_{\pi}(\mathscr{X})$

How to generalise beyond one-step ahead?

How to generalise beyond one-step ahead?

- 1.

Review some Linear Algebra tools on understanding linear dynamics 2. Based on these ideas develop Deflate-Learn-Inflate (DLI) approach 3. Use error decomposition techniques and concentration inequalities

• Spectral radius $\rho(A) := \{ |\lambda| : \lambda \in \Lambda(A) \}$ determines asymptotic behaviour:

$$\rho(A) < 1 \implies \lim_{t \to \infty} A^t =$$

• Spectral radius $\rho(A) := \{ |\lambda| : \lambda \in \Lambda(A) \}$ determines asymptotic behaviour:

$\wedge \quad \lim_{t \to \infty} \ln \|A^t\| / t = \rho(A)$ 0

• Spectral radius $\rho(A) := \{ |\lambda| : \lambda \in \Lambda(A) \}$ determines asymptotic behaviour:

$$\rho(A) < 1 \implies \lim_{t \to \infty} A^t =$$

 $\wedge \quad \lim_{t \to \infty} \ln \|A^t\| / t = \rho(A)$ 0

$$\rho(A) < 1 \implies \lim_{t \to \infty} A^t =$$

• Spectral radius $\rho(A) := \{ |\lambda| : \lambda \in \Lambda(A) \}$ determines asymptotic behaviour:

 $\wedge \quad \lim_{t \to \infty} \ln \|A^t\| / t = \rho(A)$ 0

• if ||A|| < 1 then geometric decay $||A^t|| \le ||A||^t$

• Spectral radius $\rho(A) := \{ |\lambda| : \lambda \in \Lambda(A) \}$ determines asymptotic behaviour:

$$0 \wedge \lim_{t \to \infty} \ln ||A^t|| / t = \rho(A)$$

$$\rho(A) \le \|A\|$$

- if ||A|| < 1 then geometric decay $||A^t|| \le ||A||^t$
- if ||A|| > 1 then transient growth $\sup_{t \in \mathbb{N}_0} ||A^t|| > 1$

L. N. Trefethen, M. Embree. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton Uni. Press 2005.

Transient Behaviour of Asymptotically Stable LDS

• Spectral radius $\rho(A) := \{ |\lambda| : \lambda \in \Lambda(A) \}$ determines asymptotic behaviour:

$$0 \wedge \lim_{t \to \infty} \ln \|A^t\| / t = \rho(A)$$

$$\rho(A) \le \|A\|$$

- if ||A|| < 1 then geometric decay $||A^t|| \le ||A||^t$
- if ||A|| > 1 then transient growth $\sup_{t \in \mathbb{N}_0} ||A^t|| > 1$
- $||A|| \gg \rho(A)$ dynamics is highly non-normal

• Pseudospectrum describes transient behaviour

$$\Lambda_{\varepsilon}(A) := \bigcup_{\|E\| \le \varepsilon} \Lambda(A + E) = \{ z \in \mathbb{C} : \|(zI - A)^{-1}\|^{-1} \le \varepsilon \}$$

Pseudospectrum describes transient behaviour

$$\Lambda_{\varepsilon}(A) := \bigcup_{\|E\| \le \varepsilon} \Lambda(A + E)$$

A circulant (hence normal) matrix: $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \|(z - \mathbf{A})^{-1}\|_{0}$

lmz (

 $= \{ z \in \mathbb{C} : \| (zI - A)^{-1} \|^{-1} \le \varepsilon \}$

Pseudospectrum describes transient behaviour

$$\Lambda_{\varepsilon}(A) := \bigcup_{\|E\| \le \varepsilon} \Lambda(A + E)$$

A circulant (hence normal) matrix: $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \|(z - \mathbf{A})^{-1}\|$ lmz o

• normal iff $\Lambda_{\varepsilon}(A) = \Lambda(A) + \Delta_{\varepsilon}$

 $= \{ z \in \mathbb{C} : \| (zI - A)^{-1} \|^{-1} \le \varepsilon \}$

Pseudospectrum describes transient behaviour

$$\Lambda_{\varepsilon}(A) := \bigcup_{\|E\| \le \varepsilon} \Lambda(A + E)$$

A circulant (hence normal) matrix: $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \|(z - \mathbf{A})^{-1}\|$

- normal iff $\Lambda_{\varepsilon}(A) = \Lambda(A) + \Delta_{\varepsilon}$
- non-normal iff $\Lambda_{\varepsilon}(A) \supseteq \Lambda(A) + \Delta_{\varepsilon}$

 $= \{ z \in \mathbb{C} : \| (zI - A)^{-1} \|^{-1} \le \varepsilon \}$

Pseudospectrum describes transient behaviour

$$\Lambda_{\varepsilon}(A) := \bigcup_{\|E\| \le \varepsilon} \Lambda(A + E)$$

A circulant (hence normal) matrix: $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \|(z - \mathbf{A})^{-1}\|$

• normal iff $\Lambda_{\varepsilon}(A) = \Lambda(A) + \Delta_{\varepsilon}$

• non-normal iff $\Lambda_{\varepsilon}(A) \supseteq \Lambda(A) + \Delta_{\varepsilon}$

 $= \{ z \in \mathbb{C} : \| (zI - A)^{-1} \|^{-1} \le \varepsilon \}$

A is normal iff $A = QDQ^*$ (unitary diagonalisable) iff $AA^* = A^*A$

• Pseudospectrum describes transient behaviour

$$\Lambda_{\varepsilon}(A) := \bigcup_{\|E\| \le \varepsilon} \Lambda(A + E) = \{ z \in \mathbb{C} : \|(zI - A)^{-1}\|^{-1} \le \varepsilon \}$$

Pseudospectrum describes transient behaviour

$$\Lambda_{\varepsilon}(A) := \bigcup_{\|E\| \le \varepsilon} \Lambda(A + E)$$

 $= \{ z \in \mathbb{C} : \| (zI - A)^{-1} \|^{-1} \le \varepsilon \}$

pseudospectral radius

Pseudospectrum describes transient behaviour

$$\Lambda_{\varepsilon}(A) := \bigcup_{\|E\| \le \varepsilon} \Lambda(A + E) = \{ z \in \mathbb{C} : \|(zI - A)^{-1}\|^{-1} \le \varepsilon \}$$

pseudospectral radius

$$\rho_{\varepsilon}(A) := \{ |\lambda| : \lambda \in \Lambda_{\varepsilon}(A) \}$$

distance to instability

 $d(A) := \sup_{\rho_{\varepsilon}(A) \le 1} \varepsilon = \inf_{z : |z|=1} \|(zI - A)^{-1}\|^{-1}$

• Pseudospectrum describes transient behaviour

$$\Lambda_{\varepsilon}(A) := \bigcup_{\|E\| \le \varepsilon} \Lambda(A + E) = \{ z \in \mathbb{C} : \|(zI - A)^{-1}\|^{-1} \le \varepsilon \}$$

• pseudospectral radius

$$\rho_{\varepsilon}(A) := \{ |\lambda| : \lambda \in \Lambda_{\varepsilon}(A) \}$$

distance to instability

$$d(A) := \sup_{\rho_{\varepsilon}(A) \leq 1} \varepsilon = \inf_{z \colon |z|=1} \|(zI - A)^{-1}\|^{2}$$

$$\sup_{z \in \mathcal{P}_{\varepsilon} > 1} \frac{\rho_{\varepsilon}(A) - 1}{\varepsilon} = \sup_{z \in |z| > 1} (|z| - 1) ||(zI - A)^{-1}$$

• Kreiss constant bounds transient behaviour:

$$p(A) := \sup_{t \in \mathbb{N}_0} ||A^t|| =$$

 $\eta(A) \le p(A) \le (e/2) \eta^2(A)$

• Kreiss constant bounds transient behaviour:

$$p(A) := \sup_{t \in \mathbb{N}_0} ||A^t|| =$$

 $\eta(A) \le p(A) \le (e/2) \eta^2(A)$

• Matrix case (Spijker's lemma)

• Kreiss constant bounds transient behaviour:

$$p(A) := \sup_{t \in \mathbb{N}_0} ||A^t|| =$$

 $\eta(A) \le p(A) \le (e/2) \eta^2(A)$

• Matrix case (Spijker's lemma)

 $\eta(A) \le p(A) \le ed\,\eta(A)$

Cumulative behaviour

$$s(A) := \sum_{t \in \mathbb{N}_0} \|A^t\| < \infty$$

• Recalling the transfer operator

$$A_{\pi}: L^{2}_{\pi}(\mathcal{X}) \to L^{2}_{\pi}(\mathcal{X}) \quad (A_{\pi})$$

$f(x) = \mathbb{E}[f(X_{t+1}) | X_t = x]$

• Recalling the transfer operator

$$A_{\pi}: L^2_{\pi}(\mathcal{X}) \to L^2_{\pi}(\mathcal{X}) \quad (A_{\pi}f)(x) = \mathbb{E}[f(X_{t+1}) \mid X_t = x]$$

• Process is geometrically ergodic iff trivial leading eigeinvalue is simple

$$A_{\pi} 1_{\pi} = A_{\pi}^* 1_{\pi} = 1_{\pi}$$

• Recalling the transfer operator

$$A_{\pi}: L^2_{\pi}(\mathcal{X}) \to L^2_{\pi}(\mathcal{X}) \quad (A_{\pi}f)(x) = \mathbb{E}[f(X_{t+1}) \mid X_t = x]$$

• Process is geometrically ergodic iff trivial leading eigeinvalue is simple

$$A_{\pi} 1_{\pi} = A_{\pi}^* 1_{\pi} = 1_{\pi}$$

$$\mathbf{A}_{\pi} := A_{\pi} - \mathbf{1}_{\pi} \otimes \mathbf{1}_{\pi} \quad \Longrightarrow$$

$$\rho(A_{\pi}) = ||A_{\pi}|| = 1$$

• Remove (deflate) the trivial spectral component while keeping the rest untacked

$$p(\mathbf{A}_{\pi}) < 1 \quad \wedge \quad q_t - 1_{\pi} = \mathbf{A}_{\pi}^* (q_{t-1} - 1_{\pi})$$

• Learn deflated transfer operator

$\mathbf{A}_{\pi}f := \mathbb{E}[f(X_{t+1} \mid X_t = \cdot] - \mathbb{E}_{X \sim \pi}f(X)]$

- Learn deflated transfer operator
- Notion of kernel mean embedding (KME)

 $\mathbb{E}_{X \sim \mu} \phi(X) = \mathbb{E}_{X \sim \mu} k(X, \cdot) = k_{\mu} \quad \forall h \in \mathcal{H} \langle k_{\mu}, h \rangle = \mathbb{E}_{X \sim \mu} h(X)$

 $\mathbf{A}_{\pi}f := \mathbb{E}[f(X_{t+1} \mid X_t = \cdot] - \mathbb{E}_{X \sim \pi}f(X)]$

Deflate-Learn-Inflate $\mathbf{A}_{\pi}f := \mathbb{E}[f(X_{t+1} \mid X_t = \cdot] - \mathbb{E}_{X \sim \pi}f(X)]$

- Learn deflated transfer operator
- Notion of kernel mean embedding (KME)

$$\mathbb{E}_{X \sim \mu} \phi(X) = \mathbb{E}_{X \sim \mu} k(X, \cdot) = k_{\mu}$$

leads to approximating the flow in \mathcal{H} , i.e. for all $h \in \mathcal{H}$

 $\forall h \in \mathscr{H} \langle k_{\mu}, h \rangle = \mathbb{E}_{X \sim \mu} h(X)$

Deflate-Learn-Inflate r operator $A_{\pi}f := \mathbb{E}[f(X_{t+1} | X_t = \cdot] - \mathbb{E}_{X \sim \pi}f(X)$ n embedding (KME)

- Learn deflated transfer operator
- Notion of kernel mean embedding (KME)

$$\mathbb{E}_{X \sim \mu} \phi(X) = \mathbb{E}_{X \sim \mu} k(X, \cdot) = k_{\mu}$$

leads to approximating the flow in \mathcal{H} , i.e. for all $h \in \mathcal{H}$ $\langle k_{\mu_t}, h \rangle = \mathbb{E}[h(X_t)] = \mathbb{E}[\mathbb{E}[h(X_t) | X_{t-1}]] \approx \langle k_{\mu_{t-1}}, Gh \rangle = \langle G^* k_{\mu_{t-1}}, h \rangle$

 $\forall h \in \mathcal{H} \langle k_{\mu}, h \rangle = \mathbb{E}_{X \sim \mu} h(X)$

Deflate- earn-Inflate $\mathbf{A}_{\pi}f := \mathbb{E}[f(X_{t+1} \mid X_t = \cdot] - \mathbb{E}_{X \sim \pi}f(X)]$ $\forall h \in \mathcal{H} \langle k_{\mu}, h \rangle = \mathbb{E}_{X \sim \mu} h(X)$

- Learn deflated transfer operator
- Notion of kernel mean embedding (KME)

$$\mathbb{E}_{X \sim \mu} \phi(X) = \mathbb{E}_{X \sim \mu} k(X, \cdot) = k_{\mu}$$

leads to approximating the flow in \mathcal{H} , i.e. for all $h \in \mathcal{H}$ $\langle k_{\mu_t}, h \rangle = \mathbb{E}[h(X_t)] = \mathbb{E}[\mathbb{E}[h(X_t) | X_{t-1}]] \approx \langle k_{\mu_{t-1}}, Gh \rangle = \langle G^* k_{\mu_{t-1}}, h \rangle$

deflation results in

$$\mathscr{R}(G) = \mathbb{E}_{X_t \sim \pi} \| [\phi(X_{t+1} \otimes X_t) - \phi(X_{t+1} \otimes X_t)] \| \| \| \| \phi(X_t) - \phi(X_t) -$$

 $() - k_{\pi}] - G^*[\phi(X_t) - k_{\pi}]\|^2$

features centering

• Given a sample $(x_i, y_i := x_{i+1})_{i=1}^n$ we learn $\hat{G}: \mathcal{H} \to \mathcal{H}$ via the empirical risk:

 $\hat{\mathscr{R}}(\hat{G}) = \frac{1}{n} \sum_{i=1}^{n} \| [\phi(y_i) - k_{\hat{\pi}_y}] \|$

$$-\hat{G}^*[\phi(x_i) - k_{\hat{\pi}_x}]\|^2 + \gamma \|\hat{G}\|_{\text{HS}}^2$$

• Given a sample $(x_i, y_i := x_{i+1})_{i=1}^n$ we learn $\hat{G}: \mathcal{H} \to \mathcal{H}$ via the empirical risk:

$$\hat{\mathscr{R}}(\hat{G}) = \frac{1}{n} \sum_{i=1}^{n} \| [\phi(y_i) - k_{\hat{\pi}_y}] - \hat{G}^* [\phi(x_i) - k_{\hat{\pi}_x}] \|^2 + \gamma \| \hat{G} \|_{\mathrm{HS}}^2$$

- Typical estimators:
 - Kernel ridge minimizes the regularized empirical risk
 - RRR minimizes the empirical risk with a rank constraint

$$\hat{G} = (\hat{C} + \gamma I)^{-1/2}$$
$$\hat{G} = \hat{C}_{\gamma}^{-1/2} [\hat{C}_{\gamma}^{-1/2}]$$

• Given a sample $(x_i, y_i := x_{i+1})_{i=1}^n$ we learn $\hat{G}: \mathcal{H} \to \mathcal{H}$ via the empirical risk:

$$\hat{\mathscr{R}}(\hat{G}) = \frac{1}{n} \sum_{i=1}^{n} \| [\phi(y_i) - k_{\hat{\pi}_y}] - \hat{G}^* [\phi(x_i) - k_{\hat{\pi}_x}] \|^2 + \gamma \| \hat{G} \|_{\mathrm{HS}}^2$$

- Typical estimators:
 - Kernel ridge minimizes the regularized empirical risk
 - RRR minimizes the empirical risk with a rank constraint

 $\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} \left[\phi(x_i) - k_{\hat{\pi}_x} \right] \otimes \left[\phi(x_i) - k_{\hat{\pi}_x} \right] \quad \mathbf{T} = \frac{1}{n} \sum_{i=1}^{n} \left[\phi(x_i) - k_{\hat{\pi}_x} \right] \otimes \left[\phi(y_i) - k_{\hat{\pi}_y} \right]$

$$\hat{G} = (\hat{C} + \gamma I)^{-1/2}$$
$$\hat{G} = \hat{C}_{\gamma}^{-1/2} [[\hat{C}_{\gamma}^{-1/2}]]^{-1/2}$$

• Recalling the flow $q_t - 1_{\pi} = (\mathbf{A}_{\pi}^*)^t (q_0 - 1_{\pi})$

• Recalling the flow $q_t - 1_{\pi} = (\mathbf{A}_{\pi}^*)^t (q_0 - 1_{\pi})$

 $\langle k_{\mu_t} - k_{\pi}, h \rangle_{\mathcal{H}} = \langle q_0 - 1_{\pi}, \mathbf{A}_{\pi}^t h \rangle_{L^2_{\pi}} \approx \langle k_{\hat{\mu}_0} - k_{\hat{\pi}_x}, \hat{G}^t h \rangle_{\mathcal{H}}$

• Recalling the flow $q_t - 1_{\pi} = (\mathbf{A}_{\pi}^*)^t (q_0 - 1_{\pi})$

 $\langle k_{\mu_t} - k_{\pi}, h \rangle_{\mathcal{H}} = \langle q_0 - 1_{\pi}, \mathbf{A}_{\pi}^t h \rangle_{L^2_{\pi}} \approx \langle k_{\hat{\mu}_0} - k_{\hat{\pi}_x}, \hat{G}^t h \rangle_{\mathcal{H}}$

• we inject removed eigen-triple

 $k_{\hat{\mu}_{t}} = k_{\hat{\pi}_{y}} + [\hat{G}^{*}]^{t} [k_{\hat{\mu}_{0}} - k_{\hat{\pi}_{x}}]$

• Recalling the flow $q_t - 1_{\pi} = (\mathbf{A}_{\pi}^*)^t (q_0 - 1_{\pi})$

$$\langle k_{\mu_t} - k_{\pi}, h \rangle_{\mathscr{H}} = \langle q_0 - 1_{\pi},$$

• we inject removed eigen-triple

and incur the multi-step-ahead error

$$\mathscr{E}_t(\hat{G}) := \|\mathbf{A}_\pi^t - \hat{G}^t\|_{\mathscr{H} \to L^2_\pi}$$

 $\mathbf{A}_{\pi}^{t}h\rangle_{L^{2}_{\pi}}\approx\langle k_{\hat{\mu}_{0}}-k_{\hat{\pi}_{r}},\hat{G}^{t}h\rangle_{\mathscr{H}}$

 $k_{\hat{\mu}_{t}} = k_{\hat{\pi}_{y}} + [\hat{G}^{*}]^{t} [k_{\hat{\mu}_{0}} - k_{\hat{\pi}_{x}}]$

 $\leq s(\mathbf{A}_{\pi}) p(\hat{G}) \| \mathbf{A}_{\pi} - \hat{G} \|_{\mathcal{H} \to L^{2}_{\pi}}$

 $\mathscr{E}_t(\hat{G}) := \|\mathbf{A}_{\pi}^t - \hat{G}^t\|_{\mathscr{H} \to L^2_{\pi}} \leq s(\mathbf{A}_{\pi}) p(\hat{G}) \|\mathbf{A}_{\pi} - \hat{G}\|_{\mathscr{H} \to L^2_{\pi}}$

$$\mathscr{C}_t(\hat{G}) := \|\mathbf{A}_{\pi}^t - \hat{G}^t\|_{\mathscr{H} \to L^2_{\pi}} \leq s(\mathbf{A}_{\pi}) p(\hat{G}) \|\mathbf{A}_{\pi} - \hat{G}\|_{\mathscr{H} \to L^2_{\pi}}$$

* for the choice of universal kernels, we analyse one step ahead error with vector-valued regression analysis

Relationships $\mathscr{H} \sim \mathbf{A}_{\pi}$ and $\mathscr{H} \sim L_{\pi}^{2}(\mathscr{X})$ are captured by $\alpha \in [1,2]$ and $\beta \in [0,1]$ we have $-\frac{\alpha}{2\sqrt{1-\alpha}}$

$$\varepsilon_n = n_{eff}^{\overline{2(\alpha + \beta)}}$$

$$\mathscr{C}_t(\hat{G}) := \|\mathbf{A}_{\pi}^t - \hat{G}^t\|_{\mathscr{H} \to L^2_{\pi}} \leq s(\mathbf{A}_{\pi}) p(\hat{G}) \|\mathbf{A}_{\pi} - \hat{G}\|_{\mathscr{H} \to L^2_{\pi}}$$

* for the choice of universal kernels, we analyse one step ahead error with vector-valued regression analysis

Relationships $\mathscr{H} \sim \mathbf{A}_{\pi}$ and $\mathscr{H} \sim L_{\pi}^{2}(\mathscr{X})$ are captured by $\alpha \in [1,2]$ and $\beta \in [0,1]$ we have $\varepsilon_{n} = n_{eff}^{-\frac{\alpha}{2(\alpha+\beta)}}$

 $\mathscr{E}(\hat{G}) \lesssim \varepsilon_n \ln(\delta^{-1})$

$$\mathscr{C}_t(\hat{G}) := \|\mathbf{A}_{\pi}^t - \hat{G}^t\|_{\mathscr{H} \to L^2_{\pi}} \leq s(\mathbf{A}_{\pi}) p(\hat{G}) \|\mathbf{A}_{\pi} - \hat{G}\|_{\mathscr{H} \to L^2_{\pi}}$$

- * for the choice of universal kernels, we analyse one step ahead error with vector-valued regression analysis
- * using perturbation bounds we concentrate the Kreiss constant of the estimator

Relationships $\mathcal{H} \sim \mathbf{A}_{\pi}$ and $\mathscr{H} \sim L^2_{\pi}(\mathscr{X})$ are captured by $\alpha \in [1,2]$ and $\beta \in [0,1]$ we have

$$\varepsilon_n = n_{eff}^{-\frac{\alpha}{2(\alpha+\beta)}}$$

With probability at least $1 - \delta$ in the observed training data the estimation error is bounded by

 $\mathscr{E}(\hat{G}) \lesssim \varepsilon_n \ln(\delta^{-1})$

$$\mathscr{C}_t(\hat{G}) := \|\mathbf{A}_{\pi}^t - \hat{G}^t\|_{\mathscr{H} \to L^2_{\pi}} \leq s(\mathbf{A}_{\pi}) p(\hat{G}) \|\mathbf{A}_{\pi} - \hat{G}\|_{\mathscr{H} \to L^2_{\pi}}$$

- * for the choice of universal kernels, we analyse one step ahead error with vector-valued regression analysis
- * using perturbation bounds we concentrate the Kreiss constant of the estimator
- * we additionally concentrate KMEs and obtain maximum mean discrepancy (MMD) error bound

$$\left\| \mu_t - \hat{\mu}_t \right\|_{\mathcal{H}^*} = \left\| k_{\mu_t} - k_{\hat{\mu}_t} \right\|_{\mathcal{H}} \leq C$$

 $\log \delta^{-}$ $n_0 \wedge n^{\frac{\alpha}{2(\alpha+\beta)}}$

Relationships $\mathcal{H} \sim \mathbf{A}_{\pi}$ and $\mathcal{H} \sim L^2_{\pi}(\mathcal{X})$ are captured by $\alpha \in [1,2]$ and $\beta \in [0,1]$ we have $\varepsilon_n = n_{eff}^{-\frac{\alpha}{2(\alpha+\beta)}}$

With probability at least $1 - \delta$ in the observed training data the estimation error is bounded by

 $\mathscr{E}(\hat{G}) \lesssim \varepsilon_n \ln(\delta^{-1})$

Figure 3. Distribution forecasting: Relative MMD error for the OU process for 100 independent experiments (thin lines).

Empirical results

	Observable	RRR	DLI-RRR
on (RRR)	$\mathbb{E} \begin{bmatrix} r_t \mid r_0 = \cdot \end{bmatrix} \\ \mathbb{V} \begin{bmatrix} r_t \mid r_0 = \cdot \end{bmatrix}$	$\begin{vmatrix} 0.0691 \pm 0.0333 \\ 0.0470 \pm 0.0413 \end{vmatrix}$	$\begin{array}{c} \textbf{0.0673} \pm \textbf{0.03} \\ \textbf{0.0124} \pm \textbf{0.00} \end{array}$
	Table 1. RMSE in e of the CIR model (1	stimating conditional e 100 independent traini	expectation and vang datasets).

Empirical results

Figure 1. Mean Absolute Error (MAE) in forecasting the backbone Figure 4. Forecasting the Mean Square Deviation (MSD) of atomic dihedral angles of Alanine Dipeptide. Data points are 10^{-3} ns positions in Alanine Dipeptide. Notice the log-log scale. apart.

Convergence of the atomic MSD to equilibrium

References and Code

- V. Kostic, P. Novelli, A. Maurer, C. Ciliberto, L. Rosasco, M. Pontil. Learning dynamical systems via Koopman operator regression in reproducing kernel hilbert spaces. NeurIPS 2022.
- large scale dynamical systems. NeurIPS 2023. systems. ICLR 2024. 2024. Submitted 2024

- V. Kostic, K. Lounici, H. Halconruy, T. Devergne, M. Pontil. Learning the infinitesimal generator of stochastic diffusion processes,
- V. Kostic, K. Lounici, P. Novelli, M. Pontil. Koopman operator learning: sharp spectral rates and spurious eigenvalues. NeurIPS 2023. • G. Meanti, A. Chatalic, V. Kostic, P. Novelli, M. Pontil, L. Rosasco. Estimating Koopman operators with sketching to provably learn • V. Kostic, P. Novelli, R. Grazzi, K. Lounici, M. Pontil. Learning invariant representations of time-homogeneous stochastic dynamical • V. Kostic, K. Lounici, P. Inzerilli, P. Novelli., M. Pontil. Consistent long-term forecasting of ergodic dynamical systems. ICML 2024. • G. Turri, V. Kostic, P. Novelli, M. Pontil. A randomized algorithm to solve reduced rank operator regression. Submitted 2024. • K. Lounici, V Kostic, G. Pacreau, G. Turri, P. Novelli, M. Pontil Neural Conditional Probability for Statistical Inference, Submitted
- T. Devergne, V. Kostic, M. Parrinello, M. Pontil. From biased to unbiased dynamics: an infinitesimal generator approach. Submitted 2024 Code: https://github.com/Machine-Learning-Dynamical-Systems/kooplearn

THANK YOU!

