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Dynamical Systems & ML

DS are backbone mathematical models of temporally evolving phenomena

Paradigm shift in Sci & Eng:
e Classical approach: ODE/PDE/SDE models + parameter fitting

e ML approach: Can we build dynamical models purely from the observed data?

This is remarkably elegant via transfer operators theory!



The Koopman/Transfer Operator

* The forward transfer operator evolves observables
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Spectral decomposition

The (overdamped) Langevin equation
when discretised X, ; =F(X)) + noiset

e _—

A = A¥ — A = > lﬂlf ®f

compact

1 |
where A_f = pu.f i.e. scalars y; and functions f, | ‘
\ are the e1genvalues and e1genfunct10ns //}c

—
_— = = e e—— — R
—— e — — e —

S——

— —_— —_——————

e —— =

t _[f(Xt)lx() —x]—(Atf)(x) —Z m (x) (f,,f

e — e ——— e — — — ———— —_ e —

e — — RE—

B
f

the expectation of an observable is dlsentangled into temporal and static components



Learning the operator and its spectra

e Since we don’t know L3(2) we restrict A_to a chosen RKHS # and look for an
operator G : # — # such that A_(w, (- ))~(Gw, @(-)), thatis
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Learning the operator and its spectra

e Given an iid sample (x;, y;):_, learn G:H — K via the empirical risk:
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» We considered three estimators:
- Kernel ridge regression minimizes the regularized empirical risk

- PCR minimizes the empirical risk on a feature subspace spanned by the
principal components of the covariance operator

- RRR minimizes the empirical risk with a rank constraint



Our Contributions

* For the choice of universal kernels, analysing metric
distortion we conclude that low rank estimators are
preferable, and we analyse two: PCR and RRR



Our Contributions
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* For the choice of universal kernels, analysing
metric distorsion one sees that low rank estimators Lz( Q) are captured by |
are preferable, and we analyse two PCR and RRR | - [1 2] and f € [() 11 we have
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* We derive minimax optimal operator norm
learning rates for KRR, PCR and RRR
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the observed training data the
estimation error is bounded by
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Our Contributions

* For the choice of universal kernels, analysing
metric distorsion one sees that low rank estimators
are preferable, and we analyse two PCR and RRR

* We derive minimax optimal operator norm
learning rates for KRR, PCR and RRR

* We derive spectral learning rates for normal
Compact operators that reveal preference to RRR
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Our Contributions

Bad krnel
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* We show that spurious spectra can occur from the
spectral bias even for normal operators



Our Contributions

For the choice of universal kernels, analysing
metric distorsion one sees that low rank estimators
are preferable, and we analyse two PCR and RRR

We derive minimax optimal operator norm
learning rates for KRR, PCR and RRR

We derive spectral learning rates for normal
compact operators

We show that spurious spectra can occur from the
spectral bias even for normal operators

Empirically estimating the spectral bias of RRR
estimator, we deduce model selection method
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e While this was a high-level presentation, our paper is mathematically rigorous.
Check it out or come see us at the poster session for many more details

e We have an available Python code:

https:/ / github.com /CSML-IIT-UCL /kooplearn



https://github.com/CSML-IIT-UCL/kooplearn

