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DS are backbone mathematical models of temporally evolving phenomena

Dynamical Systems & ML

This is remarkably elegant via transfer operators theory!

Paradigm shift in Sci & Eng:

• Classical approach: ODE/PDE/SDE models + parameter fitting

• ML approach: Can we build dynamical models purely from the observed data? 



• We focus on discrete time DS, i.e. time homogenous Markov process:

The Koopman/Transfer Operator

    ℙ[Xt+1 |X1, …, Xt] = ℙ[Xt+1 |Xt] independent of t

• Stochastic process

• Existence of the invariant measure π     X0 ∼ π ⟹ Xt ∼ π, t ∈ ℕ

    (Xt)t≥0 ⊆ 𝒳

(Aπ f )(x) = 𝔼[ f(Xt+1) | Xt = x ]Aπ : L2
π(𝒳) → L2

π(𝒳)

• The forward transfer operator evolves observables:



                                         

where  i.e. scalars  and functions  
are the eigenvalues and eigenfunctions

Aπ fi = μi fi μi fi

⟹ Aπ = ∑∞
i=1 μi fi ⊗ fi

The (overdamped) Langevin equation 
when discretised Xt+1 =F(Xt) + noiset

Spectral decomposition

Source: youtube.com/@luigi.bonati

𝔼[ f(Xt) |X0 = x ]=(At
π f )(x) =∑i μt

i fi(x) ⟨ fi, f⟩

Aπ = A*π
compact

 the expectation of an observable is disentangled into temporal and static components



Learning the operator and its spectra
•  Since we don’t know  we restrict  to a chosen RKHS  and look for an 

operator  such that  that is
L2

π(𝒳) Aπ ℋ
G : ℋ→ℋ Aπ⟨w, ϕ( ⋅ )⟩≈⟨Gw, ϕ( ⋅ )⟩,

ℛ(G) = 𝔼Xt∼π ∥ϕ(Xt+1) − G*ϕ(Xt)∥2
L2

π(𝒳) L2
π(𝒳)

G
ℋ ℋ

Aπ

Gψi = λiψi ⇒ ∥Aπψi − λiψi∥L2
π(𝒳) ≤ ∥Aπ|ℋ

− G∥ℋ→L2
π(𝒳)

ℰ(G)

∥ψi∥ℋ

∥ψi∥L2π(𝒳)

η(ψi)operator norm error metric distorsion



Learning the operator and its spectra

• Given an iid sample  learn  via the empirical risk:(xi, yi)n
i=1 Ĝ :ℋ→ℋ

• We considered three estimators:

- Kernel ridge regression minimizes the regularized empirical risk

- PCR minimizes the empirical risk on a feature subspace spanned by the 
principal components of the covariance operator 

- RRR minimizes the empirical  risk with a rank constraint

ℛ̂(Ĝ) = ∑n
i=1∥ϕ(yi) − Ĝ*ϕ(xi)∥2 + γ∥Ĝ∥2

HS



Our Contributions
❖ For the choice of universal kernels, analysing metric 

distortion we conclude that low rank estimators are 
preferable, and we analyse two: PCR and RRR

❖ We derive minimax optimal operator norm learning 
rates for KRR, PCR and RRR

❖ We derive spectral learning rates for normal 
compact operators  

❖ We show that spurious spectra can occur from the 
spectral bias even for normal operators

❖ From spectral bias of RRR estimator, we deduce 
model selection method
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compact operators  
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spectral bias even for normal operators
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estimator, we deduce model selection method

With probability at least  in 
the observed training data the 
estimation error is bounded by 

1 − δ

ℰ(Ĝ) ≲ εn ln(δ−1)

Relationships   and  
 are captured by 

 and  we have

ℋ ∼ Aπ
ℋ ∼ L2

π(𝒳)
α ∈ [1,2] β ∈ [0,1]

εn = n− α
2(α + β)



Our Contributions
❖ For the choice of universal kernels, analysing 

metric distorsion one sees that low rank estimators 
are preferable, and we analyse two PCR and RRR

❖ We derive minimax optimal operator norm 
learning rates for KRR, PCR and RRR

❖ We derive spectral learning rates for normal 
compact operators that reveal preference to RRR 

❖ We show that spurious spectra can occur from the 
spectral bias even for normal operators

❖ Empirically estimating the spectral bias of RRR 
estimator, we deduce model selection method

Relationships   and  
 are captured by 

 and  we have

ℋ ∼ Aπ
ℋ ∼ L2

π(𝒳)
α ∈ [1,2] β ∈ [0,1]

εn = n− α
2(α + β)

With probability at least  in 
the observed training data the 

eigenvalue error is bounded by 

1 − δ

|μi − ̂λi | ≲
σr+1(Aπ|ℋ

)

σr(Aπ|ℋ
) +εn ln(δ−1)
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Figure 2: Estimated eigenfunctions b i of a Langevin dynamics vs. ground truth. The average
empirical biases bsi, i 2 [4] are discussed at the end of Section 6. The results correspond to 50
independent estimations on 2000 training points each. PCR and RRR estimators were fitted with the
same parameters: Gaussian kernel of length scale 0.175, � = 10

�5 and r = 4.

7 Experiments

We illustrate various aspects of our theory with simple experiments. They have been imple-
mented in Python using the library Kooplearn (available at https://github.com/CSML-IIT-UCL/
kooplearn) to fit the PCR and RRR estimators. Full details are in Appendix F.

Learning the Spectrum of the Ornstein–Uhlenbeck Process. In this experiment we designed three
different kernel functions (the “good ”, the “bad ” and the “ugly ”) to illustrate how an unseemly
kernel choice can induce catastrophic biases in the estimation of Koopman eigenvalues. We focus
on the uniformly sampled Ornstein-Uhlenbeck (OU) process, discussed in Example 3, relying on
the spectral decomposition of its Koopman operator (µi, fi)i2N to design the three kernel functions.
The good kernel is just the sum of the leading T = 53 terms of the spectral decomposition of A⇡ , i.e.
kgood(x, y) :=

PT
i=1

µifi(x)fi(y). The associated RKHS coincides with the leading eigenspace of
A⇡ , and no deformation of the metric structure takes place, so that the injection map S : H ,! L

2

⇡(X )

is a partial isometry. The bad kernel is defined according to the construction presented in Example 3
for ⌫ = 1/r

2 where r is the rank of the estimator. For this kernel, the introduced bias is innocuous for
RRR, but lethal for PCR. Finally, the ugly kernel corresponds to ⌫ = r

2, introducing large quotients
�r+1(A⇡S)/�r(A⇡S) and �r+1(S)/�r(S), and, hence, an irreparable bias in both estimators.

Figure 1 depicts the distribution of the eigenvalues estimated by PCR and RRR over 50 independent
simulations, against the ground truth. For both algorithms each simulation is comprised of 20000

training points, the regularization is � = 10
�4 and the rank is r = 3. The three largest eigenvalues of

A⇡ are correctly estimated by both algorithms for kgood and by RRR for kbad. On the contrary, the
distribution of the eigenvalues for kugly (and kbad for PCR) does not concentrate around any true
eigenvalue of A⇡ , signaling the presence of spurious eigenvalues in the estimation.
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Figure 3: Forecasting RMSE on the Alanine Dipeptide dataset for 19 different RRR estimators, each
corresponding to a different kernel, which show how the best model, according to the empirical
spectral bias metric, also attains the best forecasting performances by a large margin.
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Our Contributions
❖ For the choice of universal kernels, analysing 

metric distorsion one sees that low rank estimators 
are preferable, and we analyse two PCR and RRR

❖ We derive minimax optimal operator norm 
learning rates for KRR, PCR and RRR

❖ We derive spectral learning rates for normal 
compact operators  

❖ We show that spurious spectra can occur from the 
spectral bias even for normal operators

❖ Empirically estimating the spectral bias of RRR 
estimator, we deduce model selection method

e�5 e�4 e�3 e�2 e�1 e0

Good kernel

e�5 e�4 e�3 e�2 e�1 e0

Bad kernel

e�5 e�4 e�3 e�2 e�1 e0

Ugly kernel

Reduced Rank (RRR) Principal Components (PCR) a.k.a. EDMD

Figure 1: PCR vs. RRR in estimating the largest eigenvalues of the 1D Ornstein–Uhlenbeck
process with three different kernels over 50 independent trials. Vertical lines correspond to Koopman
eigenvalues. The good kernel is such that its H corresponds to the leading eigenspace of the Koopman
operator, while the other two are spans of scaled and permuted eigenfunctions for which the distortion
with respect to the original metric structure of A⇡ introduce slow (bad kernel) and fast (ugly kernel)
spectral decay of the covariance.

3 The Problem and Main Result in a Nutshell

In this section we introduce the spectral estimation problem, outline our main results in a distilled
form, and discuss some important implications. Recall the definition of Koopman operator (1) and
its spectral decomposition (2). Given a rank r estimator bG2Br(H) of A⇡ , we let (b�i, b i)

r
i=1

be its
spectral decomposition, satisfying bG b i =

b�i b i. We aim to study how well a nonzero eigenvalue b�i
of bG estimates its closest Koopman eigenvalue µj(i), where

j(i) = argminj2N|b�i � µj |. (6)

Moreover we wish to compare b i with the corresponding true Koopman eigenfunction. To this end,
we embed b i in L

2

⇡(X ) by means of the operator S and define the normalized estimated eigenfunction

bfi = S b i / kS b ik. (7)

One of the key quantities studied in this work is the eigenvalue estimation error |b�i � µj(i)|, i 2 [r].

Recalling that A⇡ is compact and self-adjoint, the classical Davis-Kahan result [17] implies that the
eigenvalue estimation error |b�i �µj(i)| also bounds the quality of the eigenfunction approximation as

k bfi � fj(i)k2 
2|b�i � µj(i)|

[gapj(i)(A⇡) � |b�i � µj(i)|]+
(8)

where gapj(A⇡)= min` 6=j |µ`�µj | is the distance between µj and its closest Koopman eigenvalue.

Let �j(·) denotes the j-th singular value of an operator. To give a flavour of our results, here we
report spectral bounds for the Gaussian kernel. In this case, Theorem 3 below gives a high probability
bound on the estimation error |b�i � µj(i)|, that is of order

O
✓
�r+1(A⇡S)

�r(A⇡S)
+

1p
n

◆
for bGRRR

r,� , and O
✓

�r+1(S)

[�r(A⇡S) � �r+1(S)]+
+

1p
n

◆
for bGPCR

r,� .

If the Koopman operator has finite rank then �r+1(A⇡S) = 0, the RRR estimator is unbiased, and its
error goes to zero at the rate 1/

p
n. Otherwise, recalling that �r+1(S) is the square root of the (r+ 1)-

th eigenvalue of the kernel operator [38, Chapter 4.5], if H is infinite dimensional �r+1(S) > 0, i.e.
PCR has a strictly positive bias. In general, the presence of a bias in the estimated eigenvalues may
result in the appearance of spurious eigenvalues. This phenomenon for PCR is well documented
in practice, see e.g. [13, 14, 26, 28]. In Figure 1 we illustrate such an effect on a simple dynamical
system discussed both in Example 3 and in Section 7.

4 Approach

The core of our analysis is Theorem 1. It reveals that in order to derive spectral estimation bounds for
the Koopman operator, it is not enough to study the excess risk in the HS norm. Indeed, our spectral

4
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ŝi = 0.004
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Example 2. The spectral decomposition
The small molecule alanine dipeptide

The dihedral angles  and  characterize 
the long-time behaviour of the molecule.


This should be reflected in the leading 
eigenfunctions of the Koopman operator. 

ψ ϕ



● While this was a high-level presentation, our paper is mathematically rigorous. 
Check it out or come see us at the poster session for many more details

● We have an available Python code:

 https://github.com/CSML-IIT-UCL/kooplearn

THANK YOU!

https://github.com/CSML-IIT-UCL/kooplearn

